
AD-R161 15 AN RSSESSENT OF ROS SUITILITY IN GENEWNL PURPOSE 1/3
PROGRAMNING APPLICRTIONS(U) RIR FORCE INST OF TECH
URIONT-PATTERSON SF9 ON SCHOOL OF SYST.

UNLSIIDLDCVT TR.SEP 85 F/B 9/2 N

.3.

11111 ~ 1 111 .0
Jill 1 1.8
1111.5 III.!4.. JII1.6

1.25i 11111 lhI4~

MICROCOPY RESOLUTION TEST CHART
NAATIONAL BUREAU OF STANDARDS - 96 3-A

* - --

II

AN ASSESSMENT OF ADA'S SUITABILITY
IN GENERAL PURPOSE

PROGRAMMING APPLICATIONS

THES I S

Larry D. Cavitt Anthony A. Panek

Captain, USAF Captain, USAF

AFIT/GLM/LSM/85S-62

crnC
cw, S ;CTED

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DTRIBUTIoN STATEMENT A
Appoved ibofox public n lewq .Ditibto un1ne 86- 2.5 .006

'.. . . _ < . .: .-. : ,. . . . , - ,-
.. . . .L. " '::" "' " l ini nn. hi ',h ' "" 'j"" "/ 9 "" { """" " " ° " " " "v .".. ,. .- ',,.

.. me V.

AFIT/GLM/LSM/8 5S-6 2

AN ASSESSMENT OF ADA'S SUITABILITY
IN GENERAL PURPOSE

PROGRAMMING APPLICATrIONS

T HESI£S

Larry D. Cavitt Anthony A. Panek
Captain, USA.F Captain, USAF

NOV 27 W9Ej

rkpproved for public release; distribution unlimited

The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the United States Air
Force, or the Department of Defense.

L~y

Dist
;ZfS C it,

D i t ... ')1.

AFIT/GLM/LSM/85S-62

AN ASSESSMENT OF ADA'S SUITABILITY IN

GENERAL PURPOSE PROGRAMMING APPLICATIONS

THESIS

Presented to the Faculty of the School

of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

Larry D. Cavitt Anthony A. Panek
Captain, USAF Captain, USAF

September 1985

Approved for public release; distribution unlimited

Acknowledgements

While the collective assistance of many individuals at

the Air Force Institute of Technology contributed to this

reseach, the authors wish to specifically acknowledge those

who made major contributions.

We would like to thank our advisor Captain Patricia

Lawlis for her guidance and assistance during this research

effort, who encouraged and did not let us stray from our

research objectives.

We would also like to thank Dr. Charles Richard for

the assistance he gave us while learning the Ada language.

Finally, we wish to thank our wives for their

continuing patience, encouragement and understanding (except

during late Friday-night sessions at the Fly-Wright) which

inspired us to complete this research project on time.

ii

Table of Contents

Page

Acknowledgements. ii

List of Figures...... Viii

List of Tables . ix

List of Acronymfns x

Abstract..... xi

1. Overview..... 1

introduction. 1
?ro1blen 3"katement 2

Justification 3
Scope...... 4
L..imitations 4
Research Objectiveas 5
Research Questions 5

ii. Lite rature Review7

introduction. 7
3ackground: General Issue. 7
Ada Development 11
Language Features 17
Ada As A Genecal Purpose Language 20

lfi. Meth-oiology 26

Introduction... 26
Research Prc3Juces. 26
Translation.... 29
M4easuremnents. 30

IV. Findings and Analysis 34

Introduction 34
Functional Equivalence 36
Storage Efficiency 45
Pxecution Efficiency 51
.,aintainability and Transportablilty 52
Source Code 'Readability 59
other Findings. 65

bT

Page

V. Conclusions and Recommendations 63

Conclusions..... 68
Recommendations 71

Appendix A: Source Listing Trapezoidal Integration
Program Original FORTRAN 72

Appendix B: Source Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
TeleSoft-Ada Compiler Version 1.5 74

Appendix C: Source Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
Using Default Float Precision Vads
Compiler Release V04.06 76

Appendix D: Source Listing Trapezoidal Integration
Program Ada Line-By-Line Translation

*Using Six Digit Precision Vads Compiler
Release V04.06 78

Appendix E: Source Listing Trapezoidal Integration
Main Program Ada Redesign Using Default
Float Precision Vads Compiler
Release V04.06 80

Appendix F: Source Listing Trapezoidal Integration
Routines Package Ada Redesign Using
Default Float Precision Vads Compiler
Release V04.06 81

Appendix G: Source Listing Trapezoidal Integration
Main Program Ada Redesign Using Six Digit
Precision Vads Compiler Release V04.06 . . . 83

Appendix H: Source Listing
Trapezoidal Integration Routines Package
Ada Redesign Using Six Digit Precision
Vads Compiler Release V04.06 84

;ppendix I: Source Listing Truck Simulation Program
FORTRAN 4 Version
with 3500 Element Array 86

Appendix J: Source Listing Truck Simulation Program
FORTRAN 4 Version
Using 6500 Element Array 92

iv

ri

Page

Appendix K: Source Listing Truck Simulation Program
Ada Line-By-Line Translation with 3500
Element Array TeleSoft-Ada Compiler
Version 1.5 98

Appendix L: Source Listing Truck Simulation Program
Ada Line-By-Line Translation with 3500
Element Array Vads Compiler Release
V04.06 106

Appendix 1: 39,urce Listing Truck Simulation Program
Ada Line-By-Line Translation with 6500
Element Array Vads Compiler Release
V04.06 114

Appendix N: Source Listing Truck Simulation Main
Program Ada Redesign TeleSoft-Ada
Version 1.5 122

Appendix 0: Source Listing Simulation Routines
Package Ada Redesign TeleSoft-Ada
Version 1.5 o o 123

Appendix P: Source Listing Natural Log Package Used
By Ada Truck Simulation Program 129

Appendix Q: Source Listing Truck Simulation Main
Program Ada Redesign
Vads Compiler Release V04.06 131

Appendix R: Source Listing Truck Simulation Routines
Package Ada Redesign Vads Compiler Release
V04.06. 133

Appendix S: Source Listing Library Maintenance
Program Original Pascal Version 140

Appendix T: Source Listing Library Maintenance
Program Ada Line-By-Line Translation
Vads Compiler Release V04.06 145

Appendix U: Source Listing Library Maintenance
Main Program Ada Redesign Vads
Compiler Release V04.06 151

Appendix V: Source Listing Library Maintenance
Routines Package Ada Redesign Vads
Compiler Release V04.06 152

V

Page

Appendix W: Source Listing Library Maintenance
Data File Creation Program Ada
Redesign Vads Compiler Release V04.06 . . 156

Appendix X: Output Listing Trapezoidal Integration
Program FORTRAN 4 Version 157

Appendix Y: Output Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
TeleSoft-Ada Compiler Version 1.5 158

Appendix Z: Output Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
Using Default Float Precision Vads
Compiler Release V04.06 159

Nppendix AA: Output Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
Using Six Digit Precision Vads Compiler
Release V04.06. 160

Appendix BB: Output Listing Trapezoidal Integration
Program Ada Redesign Using Default
Float Precision Vads Compiler
Release V04.06. 161

Appendix CC: Output Listing Trapezoidal Integration
Program Ada Redesign Using Six Digit
Precision Vads Compiler Release V04.06. . . 162

Appendix DD: Output Listing Truck Simulation Program
FORTRAN 4 Version Using 3500 Element
Array 163

Appendix EE: Output Listing Truck Simulation Program
FORTRAN 4 Version Using 6500 Element
Array 170

Appendix FF: Output Listing Truck Simulation Program
Ada Line-By-Line Translation with 3500
Element Array TeleSoft-Ada Compiler
Version 1.5 177

Appendix GG: Output Listing Truck Simulation Program
Ada Line-By-Line Translation with 3500
Element Array
Vads Compiler Release V04.06 184

vi

. . ~ ~ ~ ~ ~ , .-. .. ," - '.-....- - -.- - -,..-

Page

Appendix HH: Output Listing Truck Simulation Program
Ada Line-By-Line Translation with 6500
Element Array
Vads Compiler Release V04.06 191

Appendix II: Output Listing Truck Simulation Program
Ada Redesign TeleSoft-Ada Compiler
Version 1.5 198

Appendix JJ: Output Listing Truck Simulation Program
Ala Redesign Vads Compiler Release V04.06 . 204

ppendix KK: Output Listing Library Maintenance Program
Original Pascal Version 210

Appendix LL: Output Listing Library Maintenance Program
Ada Line-by-Line Translation
Vads Compiler Release V04.06 213

\A2eidix MM: Output Listing Library Maintenance Program
'. e d Redesign
Vads Compiler Release V04.06 216

Bibliography 219

.:ii

List of Figures

Figure Page

I. FORTRAN: Trap3 Output 36

2. Ada: Trap3 Output (Line-by-Line) 37

3. Ada: Trap3 Output (With 6 Digit Precision) 38

4. FORTRAN: Truck Output 39

%3a: rruck Output (Line-by-Line) 40

3. Chack of)ueue Condition 43

7. Sample of LIBLIST Output 45

3. San?1 of -OTRAN Source Code 61

9. Sample of Ada Redesign Source Code 62

10. Sample of FORTRAN Decl cirind initialization
of Objects64

11. Sample of Ada Declaration and initialization
of Objects 65

viii

. ; . . ;,a,,,'aha,- - ,. ,, , . ,,,:j..- -1- m ~- . ._. -. ..- . .-..... - . .-. • . .-.--. .- - .

List of Acronyms

AFIT Air Force Institute of Technology

AJPO Ada Joint Program Office

APSE A1 Programming Support Environment

DARPA Defense Advanced Research Project Agency

DCA Defense Communications Agency

DPD Data Project Directive

HOL High Order Language

,DL4G High Order Language Working Group

KAPSE Kernal Ada Programming Support Environment

LRM Language Reference Manual

NSA National Security Agency

PDL Program Design Language

x

" < - " " -. . .-. . .-: i - . - ., . - .. . --- .. - ,i , - -, - - -. . i] .- i .

AFIT/GLM/LSM/85S-62

Abstract

The Ada programming language is the result of a

multiyear effort under the sponsorship of the Department of

Defense (DoD) to obtain the benefits of a single DoD-wide

language for use in embedded computer systems. The language

was developed to reduce or eliminate many of the serious and

costly problems associated with the development and

maintenance of software for embedded systems. This research

assesses Ada's suitability in simple, non-embedded

applications, specifically, numerical computation,

simulation, and file processing. FORTRAN and Pascal

programs in these applications were translated into Ada.

Comparisons were made between the originals and the

translations with reaard to lines of source code,

transportability, maintainability, readability, execution

time, and any other finding relevant to the study. The

study revealed that while further research is needed, Ada is

a powerful programming language suitable for use in these

non-embedded applications.

xi

. . ° *.. . *..

. '- ' " " " " • . . .l• . . - . " '." '"..

AN ASSESSMENT OF ADA'S

SUIT6,31LIT' IN GENERAL PURPOSE

PROGRAMMING APPLICATIONS

I. OVERVIEW

Introduction

In the early 1970's the Department of Defense (DoD)

cmvdiched studies on the proliferation of computer program-

sning languages in DoD. On the basis of the studies it was

predicted that $24 billion coild be saved on DoD computer

software costs between 1933 and 1999 if one common program-

iln- language was used rather than the approximately 450

?:3gramming languages and incompatible dialects then in use

in DoD. The area of computer application with the greatest

number of different languages and military service unique

Jersion3 of languages involved embedded computer systems,

and hence this area was chosen as the original target appli-

cation area for a new common DoD language. An embedded

computer is one which is an integral part of a larger system

and either controls or otherwise affects the operation of

the system. Emnbedded computers are part of virtually every

military weaoq system today (2:12-13). DoD, in an effort

to standardize and replace most of the programming languag-

C" '-'"- m'h-k ,a.,a imh lmm" " " " ". .. h Im W lU 'I l ' d ~n ma" " " "-""" Y ' '' '" '' ' '' ' '' "''- '' " "''"1"

es in use, sponsored the development of the Ada programming

language. Although Ada was developed primarily for use in

e nbedded systems, it also has the potential to be used in

the general purpose programming environment. That is, Ada

has the potential to be used in a wide range of applica-

tions, such as payroll, inventory management, numerical

computation, and personnel data. If Ada can effectively be

used as a general purpose language and becomes the DOD

standard language for all applications, as opposed to just

embedded systems, costs associated with support of all

programming languages used for non-embedded applications can

also be eliminated. This will result in cost savings of more

thian the original estimate of $24 billion (2:12-13; 3:31;

13:9).

Problem Statement

Evantually, DOD will require all embedded systems to be

written in Ada. Therefore, current research efforts are

primarily aimed at evaluating embedded applications. This

study is not involved with embedded systems, but rather

investigates the suitability of Ada in other than embedded

system applications. In particular, this study analyzes Ada

against other traditional languages as they are used in

particular applicationns. The languages and applications

evaluated are; 1) FORTRAN, in a numerical computation and in

a simulation application, and 2) Pascal, in a text file

2

processing application. This study evaluates the relative

advantages and disadvantages of using Ada versus the chosen

language in the given application.

Justification

The Department of the Air Force, Directorate of

Information and Technology, issued Data Project Directive

(DPD) HAF-P83-006, dated 23 December 1983. The DPD "directs

planning, experimentation, and analysis efforts required to

evaluate the use of Ada in the general purpose computing

environment. This program is in pursuit of Ada Joint Pro-

gram Office efforts to implement and introduce Ada within

DoD as provided by their charter, (OUSD(R&E)) memo, 12

December 1980, Ada Joint Program Office (AJPO)" (19:1).

The objective of the program is to evaluate Ada in a

general purpose environment and to identify training re-

quirements. Specifically, the DPD directs the participants

in the study to:

1. Gain experience with Ada by using the language
to accomplish a representative range of end uses.

2. Document experiences using Ada and provide a
technical evaluation of the suitability of the
language for widespread use in the Air Force
general purpose computing arena or subsets thereof
(19:1).

The DPD has specifically tasked the Air Force Institute

of Technology to "use Ada on one or more selected applica-

tions and provide evaluation reports in pursuit of the

stated objectives" (19:3).

3

The justification for this research is based on the

DPD. Research using Ada in the general purpose environment

is necessary as it will be used as part of the basis in the

determination of the suitability of Ada as the DoD standard

language.

The scope of this research is confined to the evaluation

of the Ada programming language in general purpose applica-

tions. As mentioned earlier, this study is limited to an

evaluation of Ada versus the high order programming languag-

es FORTRAN and Pascal. The applications considered are

numerical computation and a simulation application in FOR-

TRAN, and a text file processing application using Pascal.

Limitations

Two of the com-ilers used in this study are the

TeleSoft-Ada Compiler, version 1.3, 31 May 1983, and the

TeleSoft-Ada Compiler, version 2.2, 11 Feb 1985, running

under the UNIX operating system.

Both versions of the TeleSoft-Ada Compilers are

unvalidated by the Ada Joint Program Office and are only a

partial implementation of the full Ada language. Although

only a subset of the full language is available, the unval-

idated compilers implement enough of the language facilities

to be useful in this research. All language facilities

4

. -
.

available in this release of the compiler conform to the

requirements of ANSI/MIL-STD 1815A, 22 Jan 1983, and will

therefore be in subsequent releases, and ultimately, the

validated version.

This research does not involve an evaluation of Ada

against COBOL applications. Compete assessment of Ada's

suitability as a general purpose language must include

comparisons with a language so widely used for business data

processing as COBOL. However, the authors have no previous

experience with COBOL, therefore, they did not attempt to

evaluate the differences.

Research Objectives

The objectives of this researcn effort are as follows:

1. To determine if Ada is suitable as the

implementation programming language in the applications

chosen for the study.

2. Identify particular strengths and/or weaknesses of

Ada in the specific applications and in general.

3. Make recommendations from the findings on the

suitability of Ada as a general purpose programming lan-

guage.

Research Questions

This study addresses Ada's strengths and weaknesses

relative to the language it is to be compared against, and

includes but is not limited to the following areas:

- " 5

-. o .- . . - . - . . o -. - - -. i . . - . - - . . - - .. -.I.. -

1. To what extent can the Ada translated programs

replicate the output of the original programs?

2. What differences, if any, are evident

concerning the number of lines of source code and the size

of the executable code necessary to replicate the output as

compared against the original programs?

3. Are there differences in the runtime

characteristics of the programs coded in Ada as opposed to

the original programs?

4. Are there any differences in the

maintainability and transportability aspects of the Ada

coded programs to include error detection, testability, and

any other observations relevant to the maintenance of the

complete system as compared against the original programs?

5. What are the differences or similarities in

readability of the source codes?

6. Other findings which are important to the

overall evaluation of the language in the general purpose

environment.

6

......... .h k k"L d dh l ih...

II. LITERATURE REVIEW

Introduction

This literature review investigates several aspects of

the computer progaimiing language Ada. The literature

review will first identify problems which led to the need

for a common high order language; second, provide an over-

vieaw of the steps taken to develop Ada; third, relate Ada's

f4±tares to modern programming methodologies; and finally,

outline what the literature reveals concerning Ada's suit-

ability to be used as a general purpose programming lan-

guage.

Background: General Issue

In the early 1970's, the United States Department of

Defense (DoD) was faced with an iacccesing trend in software

costs. In 1973, software costs were over $3 billion, and

consisted of 46 percent of DoD computer costs. A breakout

of these costs by computer application reveals: 56 percent

for embedded systems, 19 percent for dcLta processing, 5

percent for scientific, and 20 percent for indirect software

costs. An early 1970's study by the Electronics Industries

Association (EIA) predicted that total DoD software costs

for embedded syste.,s alone would exceed $32 billion in 1990.

Software shortcomings within DoD which created these rising

7

costs were a diversity of programming languages, improper

application of programming languages, languages not equipped

to handle modern programming methodologies, and a lack of

useful software environments. An early 1970's DoD study

revealed over 45a different programming languages in use

within DoD, resulting from the lack of controls on the use

of computer languages. Project managers were free to use

any language. All of this led to increased software costs

in the following ways:

1. Duplication of training and maintenance for
each independent language, compilers and software
support packages.

2. Limiting the applicability of new support
software to one system or project (11:26).

Besides cost, though related to cost, another reason for

the development of a more powerful language is a condition

called the "software crisis." Grady Booch describes the

crisis in the following way:

Our computers make some things more ef-
ficient and have opened areas of application
that were previously impossible to solve.
Correspondingly, we nave developed software
tools such as programming languages to help
us solve problems and control our machines,
but many of these tools still do not help
us cope with the complexity of our solutions.
Thus, software development is no longer a
labor-saving activity but is labor intensive
instead (2:2).

To solve this problem of complicated, unreliable,

inflexible, and unmaintainable software, emphasis must be

placed on developing languages which can exploit modern

design methodologies. Languages such as FORTRAN and COBOL,

although popular, do not have the capabilities needed for

use with modern design methodologies. According to Booch,

"In a sense, these languages constrain our way of thinking

about a problem to a manner that is primarily sequential and

imperative; we call this condition the von Neumann mind-set"

(2:3). FORTRAN and COBOL were not designed to handle the

more complicated systems we currently possess, for example,

embedded computer systems. Therefore, DoD needs a language

which atilizes nodern design techniques. David Fisher, as

quoted in Booch's book, explains which software problems

need to be solved:

1. Responsiveness. Computer-based systems
often do not meet user needs.

2. Reliability. Software often fails.

3. Cost. Software costs are seldom pre-
dictable and are often perceived as excessive.

4. Modifiability. Software maintenance is
complex, costly and error prone.

5. Timeliness. Software is often late and
frequently delivered with less than promising
capability.

6. Transportability. Software from one system
is seldom used in another, even when similar
functions are required.

7. Efficiency. Software development efforts do
not make optimal use of the resources involved
(processing time and memory space) (2:6-7).

For DoD to reduce these types of problems, a language

which can support modern design methodologies was desirable.

9

Since the effort was aimed at embedded systems, the new

language should deal with the following:

1. Parallel Processing and Real-Time Control.

Capability to eecute separate entities in parallel as if

each were being executed by an independent logical proces-

sor. Entities proceed independently, except at rendezvous

points.

2. Exception Handling. Capability of the program

to respond to events that cause suspension of normal program

execution because of errors or other unusual circumstances.

3. Unique I/O Control. Capability for

communication with unique input and output devices.

4. Abstraction. One's view of an entity in the

problem space as opposed to the view from the solution space

of the computer. Part of a ladder of abstraction in which a

given part of the solution is implemented at a lower level.

5. Information Hiding. To make inaccesible

certain implementation details that should not affect other

parts of a system (2!13, 27-28; 7:9.1).

To reduce software costs and attempt to solve the

software crisis, the DOD realized the need for a common high

order language. Since embedded systems comprise the major-

ity of DOD software applicationns, the effort progressed

witn embedded systems in mind. The following section

outlines the development of the common high order language

which eventually became known as Ada (2:11-13).

Ada Devtlopment

In 1975, DoD established tne High Order Language Working

Group (HOLWG) to investigate the feasibility of developing a

common high order language for utilization on all embedded

computer systems. Membership in the HOLWG consisted of

representatives from the Army, Navy, Air Force, Defense

Communications Agency (DCA), National Security Agency (NSA),

and the Defense Advance Resrarch Projects Agency (DARPA).

The objective of the HOLWG was to define the technical

requirements for a common language, compare the requirements

against existing languages and make recommendations on the

adoption of a common language from existing languages or the

development of a new language (12:27; 6:45).

Strawman. The first iteration of the language

requirements was called Strawman. In April 1975 Strawman

was distributed to the military services and other federal

agencies for review. There were no quantifiable features in

the Strawman. The general goals of Strawman were to deter-

nine efficiency, reliability, readability, simplicity and

implementation. The reviews and responses from the Strawman

document led to a tentative set of requirements called

Woodenman.

Woodenman. In August 1975, 4oodenman was widely

distributed not only to military and federal agencies, but

also to the computer industry and computer science research

community. More than 100 review teams evaluated Woodenman

(6:35).

~ , z hi1jt. for marnv roarammers t- work to-ither on the

Tinman. The response to Woodenman led to a complete set

of requirements in January 1976 called Tininan. At this

time, Tinnan was c)fficially approved for research and devel-

opment efforts by the Assistant Secretary of Defense for

Research and Development. Along with the development of

Tinman requirements, sixteen companies performed evaluations

of 23 programming languages :qainst the developing require-

ments. rhe languages included, FORTRAN, COBOL, PL/l, HAL/S,

TACPOL, CMS-2, CS-4, SPL/1, JOVIAL J3, JOVIAL J73, ALGOL 60,

ALGOL 68, CORAL 66, Pascal, SIMULA 67, LIS, LTR, TRL/2,

EUCLID, PDL2, PEARL, MORAL, and EL/I. The results of the

evaluations concluded:

1. No existing language was suitable for use
as a common high order language for DoD embedded
systems.

2. A single language was desirable.

3. A new language should be developed from an
appropriate base (2:16).

Although each was considered inappropriate as the required

language, the evaluators recommended Pascal, ALGOL 68 and

PL/l as appropriate base languages (2:15-16).

Ironman. In January 1977, the Tinman requirements were

updated into the Ironman document. While both documents

satisfied basically the same requirements, Ironman was

written in an organized language description and manual

format, whereas Tinman was organized around general areas.

Ironman was basically the specification around which con-

tractors developed their proposed language designs (6:48).

12

Two independent studies conducted for the Management

Steering Committee for E.nDedded Conputer Resources between

January and November 1977 concluded that hundreds of mil-

lions of dollars could bC saved in DoD each year if a common

language was developed (2:16).

DoD-l. Based on the evaluation of Tinman requirements,

the HOL4G was directed to develop a common high-order lan-

guage named DoD-l. The DARPA was assigned to award the

design contract. wanting a language with high quality, and

a language to be accepted outside the defense community, DOD

opted for an international design competition from which to

select the design. The request for proposal (RFP) was

submitted in April 1977, requesting designs for the high-

order language. DARPA selected four contractors to continue

the design. All four designs were Pascal based. The con-

tractors involved were: SofTech, SRI International, Inter-

netcrcs, and Honeywell/Honeywell Bull. In the period Febru-

ary through Marcn 1973, the designs were ,valuated by 125

design review teams, and two designs were selected to pro-

ceed (Intermetrics and Honeywell/Honeyweil Bull). During

this next phase of the development, emphasis was placed on

programming environments. A language in itself was not

capable of improving software development without a suitable

support systeln. In 1973, the HOLWG distributed the Sandman

document which addressed the technical and managerial as-

pects of the programming environnments. Based upon the

13

response to the Sandman document, the Sandman document was

revised and released as the Pebbleman document. With empha-

sis on the programming environment, the HOLRG released the

final language requirements in June 1978 called Steelnan,

which corrected all past deficiencies (2:17-18; 6:48).

A review of the final two designs was conducted in March

through April 1979. In May 1979 Honeywell/Honeywell Bull

was awarded the contract for the new design. The Honeywell

team was out of France and was headed by Dr. Jean Ichbiah

(2:18).

Ada. It was at this time that DoD-l was named Ada.

Ada was selected to honor the mathematician Lady Augusta Ada

Byron (1815-1852), Countess of Lovelace. The Countess

worked with Charles Babbage on his difference and analytic

engines. She recommended how the engines could be pro-

grammed, thus is known as the first programmer (6:48).

Stoneman. A continuing area of concern was the

programming support environment. The Stoneman document,

which was a revision of the Pebbleman document, was the

basis for a project which started in mid-1980 to resolve

this area of concern. Support environments may be cata-

gorized as closed-ended or open-ended. In a closed-ended

environment, "the user is given a fixed set of tools that

are presumably sufficient to meet all basic requirements. A

closed environent cannot be altered or extended, short of

re-issuing the environment by suppliers" (6:50). An open-

14

...

ended environment tool set can be modified or extended at

any time to meet the needs of the user. Stoneman applied

the open-ended environment approach (6:50).

4PSE. The Ada Programming Support Environment (APSE) is

based on the Stoneman model. Potential cost savings and

quality software are inherent in an APSE. The following is

a description of an APSE:

The purpose of an APSE is to support the develop-
ment and maintenance of application software
throughout its life cycle, with particular emphasis
on software for embedded computer applications.
An important concept in an APSE is the data base,
which acts as the central repository for infor-
mation associated with each project throughout the
life cycle (10:78).

The end result of a suitable APSE is the potential for

portable and reusable tools and application software packag-

es (13:8).

KAPSE. To ensure maximum compatibility and portability

between APSE's, the Stoneman model requires all machine

dependencies of the support environments to be contained in

the Kernal Ada Programming Support Environment (KAPSE). The

purpose of the KAPSE "is to interface the tools to the

hardware" (13:8). According to Bruce Sherman, vice-presi-

dent of planning for TeleSoft Inc., the KAPSE interface

provides "common definition which the APSE, compiler, stan-

dard I/O packages and applications may use to request system

services" (18:141). The KAPSE will allow the transport-

ability of NPSE's from one host system to another.

15

AJPO. In December 1980 the HOLWG transitioned into the

joint servica Ada Joint Program Office (AJPO). The respon-

sibility of the AJPO was, "to manage the DoD Ada program by

coordinating the military services' efforts to introduce Ada

and Ada Programming Support Environment (APSE)" (13:5). The

functions of the AJPO were to:

1. Maintain the Ada language standard.

2. Develop common-use training and education

materials.

3. Validate Ada compilers.

4. Foster the use of %da within the software

community.

5. Develop Ada software tools to meet the common needs

of the services and other DoD agencies (13:5).

ANSI Approval. Publication of the Reference Manual for

the Ada Programming Language (Language Reference Manual

(LRM)) was completed in July 1980. The LRM was republished

in December 1980 by DoD as a military standard (MIL-STD

1315). Approval of Ada as an American National Standards

Institute (ANSI) standard language occurred after canvassing

potential implementors and users of the language. Based

upon favorable results of the canvass, and after minor

changes, Ada was approved as an ANSI standard on 17 February

1983 (13:7).

16

. . ..

gram is to ensure non-divergent implementations of Ada. DOD

has trademarked the Ada name, thereby limiting the use of

A the name Ada only to those compilers having been validated

by the Nda Validation Office. To become validated, compil-

ers must pass a test suite containing more than 1700 rigor-

ous program tests (6:52; 13:9).

Though a considerable effort has been made in the

development of Ada and its support environment to date, much

work and research is still necessary in developing suitable

APSE's and KAPSE's to fully realize the potential of the

language.

Language Features

In the literature there are many reviews of the Ada

language which praise its modern programming features.

According to Peter Fonash, Deputy Director of the AJPO, "Ada

is more than just another new language; by design it incor-

porates many features needed to support modern software

engineering practices. An intrinsic principle of modern

software engineering is the use of an automated environment

that provides complete life-cycle software support" (13:7).

Jean Sammet, manager of software development for IBM's

Federal Systems Division, agrees with Fonash and remarks

that "many of these features have appeared in the past but

they haven't been put together in the same [effective] way"

(10:62). The features of Ada are many and varied. The

17

. .-

language has borrowed features from other languages, but by

no means is Ada comparable to another language. It looks

like Pascal at first glance; Ada, however, is an enormously

larger and more powerful language. The following sections

outline some of the features of Ada and describe how they

are important to the language.

Package Concept. Jean Ichbiah, a major influence and

head of the Ada design team, believes "the package concept

is the core and major contribution of Ada" (10:62). A

package is a program unit in Ada which defines a collection

of related entities (2:474). These entities nay be con-

stants, variables, types, subprograms or any legal Ada

7onstruct. When defined in a package, these entities may

then be used with any other program unit with a simple

'with' clause. This facility provides Ada with a level of

abstraction never before available in a high-order language.

Strong Data Typing. Typing is borrowed from Pascal and

allows the specification of data types. Strong data typing

can be illustrated by a single example. By defining a data

type 'coin' with the values <1,5,10, and 25> representing

cents, and another data type 'currency' with values

<1,2,5,10, and 23> representing bill denominations, the

compiler would generate an error message if the two types

were mixed in an arithmetic operation. This feature reduces

software costs by detecting operations on incompatible data

types at compile time (17:76).

18

Block Structure and Separate Compilation. This feature,

borrowed from ALGOL and FORTRAN, allows separate conpila-

tion of program units, particularly subprograms, packages,

and tasks. The major benefit is simpler error detection

since each module may be compliled and tested as each is

built (10:72).

Tasking. This feature ot Ada allows separate portions

of a program to execute concurrently. With this flexibil-

ity, Ada can perform such real-time applications as robot-

ics, communications, interactive graphics, and computer-

aided design (10:72).

Exception Handling. This feature is borrowed from PL/l.

This gives the programmer the facility to define, find and

trap errors using standard Ada constructs. Exception han-

dling allows the programmer to maintain control of program

execution when a condition has occurred which would normally

terminate execution of the program (as in division by zero).

This makes programs more flexible and portable (13:72).

Benefits. One :ritici3 of 3da is the complexity of

the language. It may be a difficult language to master; the

benefits, however, far outweigh the difficulties of learning

the language. Long-term benefits of using Ada include:

1. kda programs will be transportable, that is, a

2rogram written to run on one machine may be moved to anoth-

er machine, recompiled, and executed with very few or no

changes to the source code.

19

.......b- -, ,-.,,-.. ..4,...-<..v.-..<.-....-.................. ,<.............
.... -<- ""-' us' u " ,ik"" i U > . :

2. Packaging and separate compilation will allow

programs to be constructed using existing modules. Thi3,

,long with the use of exception handling, will make for

reliable programs.

3. All of the above benefits will make programs

written in Ada much easier to maintain (10:72).

Ada as a General Purpose Language

This section concerns the suitability of Ada as a

general purpose programming language. It will address the

views on the potential of Ada in the general purpose envi-

ro(iaent based on the features of the language as compared to

other languages used in the same environment.

Advantages. While Ada was designed for embedded

systems, members of the AJPO predict that eventually Ada

will become a programming standard not only in the DOD, but

also in the non-DOD community. Though the Ada design did

not address the COBOL environnent of financial and inventory

nanagement, nor the scientific environment of FORTRAN, the

JPO believes Ada is suitable for these environments.

Fonash explains this attitude: "because Ada is a modern

Spcca~naning language that embodies good software engineering

)irinciples and modern language features, there appears to be

a growing recognition that Ada is suitable for areas other

than the elmbedded computer applications on which it was

designed" (13:9). For these reasons, Ada should be a suit-

20

.............................

able language for the traditional COBOL and FORTRAN applica-

tions (13:9).

Commercial firms have demonstrated Ada's capability for

use in business and non-DoD applications. Ralph E. Crafts,

vice-president of Operations and Marketing at INTELLIMAC,

Inc., has documented business and other non-DoD Ada applica-

tions. Examples of actual Ada business applications in-

clude:

1. A Multi-state Payroll System installed by a manu-

facturing facility in March 1962.

2. An Inventory and Parts Control System installed in

June 1982.

3. An integrated General Ledger Accounting System

installed in the summer of 1984 (5:70).

As a result of three years of Ada development for

comiercial applications at INTELLIMAC, Crafts feels there

ace many benefits in using Ada. He states, "The primary

benefits to be realized from using Ada in the commercial

environment are: enhanced utilization of structured anal-

ysis and design; the use of Ada as a PDL; accurate, func-

tional deliverables; reuse of existing code; high produc-

tivity; and lower life cycle costs" (5:71).

According to Crafts, Ada provides a structured, engi-

neering approach to software development. Language features

3ch as, modularity and packages make it difficult to write

poorly designed and unstructured programs (5:71).

21

The use of Ada as a PDL (program design language) is a

benefit of the language. A PDL is usually a nonexecutable

extension of a language which aids in the design of pro-

grans. This extension of the language is usually easy to

read English statements, which enhances the readability of

the program design. Ada alone can be used as a PDL in lieu

of developing PDLs for aiding Ada program design. According

to Crafts, there are many Ada projects which are using Ada

as a PDL (5:71).

The use of structured design and programs written in

understandable code benefit the delivery of accurate and

functional programs to the end user. Crafts contends that

the use of structured designs and code written in under-

standable English will result in the end user receiving the

product specified and expected (5:71).

The reuse of existing Ada source code enhances produc-

tivity and reduces software costs. Two examples as Px-

plained oy Crafts follows:

1. An order entry system program which consisted of

50,300 lines of Ada source code was developed several months

anead of schedule. Approximately 80 percent of the progran

reused existing Ada programs. Not only was tine of program

development reduced, but the time to test and debug the

program was also reiJuced because only 20 percent of the

software was new.

22

2. One programner developed an 8000 line Ada program

in one week by using existing Ada programs (5:71-72).

Even without the use of existing Ada progratis, Ada

enhances productivity. Over the three years of Craft's

study Ada programmers have averaged 50 lines of operational

code per day which includes design, testing, and debugging.

This is a 803 to 900 percent increase in productivity over

other languages. The Moog Company of 3utfalo, New York had

similar results. Prior to Ada, programmers typically wrote

200 lines of code per nonth. With Ada, they averaged 1200

lines per month (5:72, 6:54).

Life cycle software costs are reduced with Ada. Craft

states in generalities, without citing figures, that Ada

efficiencies of modifications, upgrades and changes to

existing Ada programs makes maintenance of Ada software

inexpensive (5:72).

One of Ada's advantages is the ability to handle large,

complex software projects. Richard LeBlanc and John Goode

of the Georgia Institute of Technology find Ada well de-

signed for large complex systems. The structured program-

ming design of Ada is based on the concept of aiodularity.

Modularity allows the programmer to reduce large systems

into smaller and easier to handle units. In Ada these units

are packages, subprograms, and tasks. Modularity -maximizes

progran reliability, readability, and maintainability

(14:75).

23

|*
![--" " ' ,'-",.Ju.,' ;, ,...."..........';," ,'

Although the members of the AJPO and others are

confident that Ada can sucessfully be applied to other than

embedded applications, there are critics of the language.

Disadvantages. The most coitnon criticism of Ada is the

complexity of the language. LeBlanc and Goode consider this

unfair treatment of Ada. Whereas Pascal is a relatively

simple language, it is not designed for large-scale software

development. The design goals of Ada and Pascal differ.

Pascal was designed as an educational tool, whereas Ada was

developed with a large range of objectives, to include

large-scale projects. LeBlanc and Goode go on to say that

the differences in design objectives should first be consid-

ered before being too critical of Ada (14:75,81; 21:248).

One may wonder whether the added features of Ada are

necessary in a general purpose language. David Coar, a

technical proluct staff member of Floating Point Systems

Inc., conducted a comparison of Pascal, Ada and Modula-2.

Pascal .as designed by Nicklaus Wirth as an educational

programming tool, suitable for modest size projects. Pascal

is not recommended for major commercial or industrial pro-

jects, and for these reasons, Pascal has never been thought

of as a true systems-implementation language. Modula-2 is

Wirth's effort to go one step further than Pascal and design

such a systems-implementation language. Modula-2 is a

language with similar design goals as Ada. Examples of

similar goals are; facilities for hardware interfacing, and

24

the capability for many programmers to work together on the

saine project. Coar's conclusions were that Modula-2 out-

performed Pascal, and was better than most available lan-

guages. The extra features of Ada, in his opinion, were of

narginal value as an implementation language (4:232).

25

1iI. METHODOLOGY

Introduction

Ada was primarily developed and designed for use in

embedded systems. The primary objective of this research is

to determine if Ada is suitable for use in general purpose

programming applications. To 1~.fm~ne Ada's suitability,

this study compares Ada to two proven high order languages,

FORTRAN and Pascal, in specific applications. The following

sections describe the procedures used in this study.

Research Procedures

The choice of a methodology in this research was

influencel strongly by the DPD. This document directed a

study of Ada and specifically tasked AFIT to "use Ada in one

or more selected applications and provide evaluation reports

in pursuit of the stated objectives" (19:13). Following

this guidance, thi:3 r.-.e-_,ch compares non-embedded programs

'drittan in FORTRAN and Pascal, against the same programs

translated into Ada.

Selection of Programs. The first step of this study

consisted of selecting three progri-ns from non-embedded

applications written in the high order programming languag-

es, FORTRAN and Pascal. The size of the programs were

26

relatively small, ranging from 60 to 300 lines of source

code. This size was desirable for two reasons:

I. Time limitations. Since the stady involves

the translation of the programs into Ada, the researchers

did not want to spend an excessive amount of time translat-

ing programs. Progc._As in the selected range of source code

lines were determined to be appropriate and within the time

available to complete the study.

2. Manageability. The researchers did not want

to be overwhelmed by programs exceeding 1000 lines of code.

The study is concerned with determining the suitaoility of

Ada for use in the general purpose environment, not the

researchers' ability to comprehend and translate large

programs.

The sampling design used in the selection of the three

programs would be classified as nonprobability sampling,

that is each population element (i.e. possible programs to

select from) does not have an equal chance of being select-

ed. The objectives of the study justifies the use of this

type of sampling technique. Accociiri4 to Emory "a random

sample that is a true crosssection of the population may not

be the objective of the research. If there is no desire to

generalize to a population parameter then there is less

concern about whether or not the samnple is fully representa-

tive" (9:177). The objective of this study is not to gener-

alize about Ada's superiority or inferiority to FORTRAN and

27

Pascal, but rather from the comparison with these languag-

es, to determine the suitability of Ada to solve problems

typically solved using these languages (9:176-177).

In ialectiag the programs to be evaluated, the

particular nonprobability sampling method used was the

method Emory defines as purposive (9:177-178). A judgment

was made as to wfnich programs were selected. The decision

to use progcans originally written in FORTRAN and Pascal was

based on the researchers' experience and familiarity with

these languages. The three programs selected for transla-

tion were:

1. A simulation program which simulates a single

server, single queue system. Program title is TRUCK, and it

is originally written in FORTRAN. (1:76-83)

2. A numerical computation program which

approximates the area under a curve using the Trapezoidal

Method of Numerical Integration. Program title is TRAP3,

and it is originally written in FORTRAN. (15:207-208).

3. A menu driven, interactive text processing

program which updates a library file system. Program title

is LIBLIST, and it is written in Pascal (22:274-280).

These programs were judged by the researchers as having

a wide variety of features which would test Ada's suitabil-

ity as a general purpose programming language.

28

Translation

In translating a software package from one high-order

language to another, two characteristics of the original are

of prime importance for the translation to be considered

correct. The first is execution equivalence, including

functional equivalence and efficiency. The second is source

code quality (8:3).

Exact execution equivalence would be for two programs,

each written in a different high-order language and each

compiled and linked, to contain the same number of machine

instructions in the executable image file and to use the

3ime amount of system resources at execution time. Execu-

tion equivalence for practical purposes is almost impossible

to do. In this study, execution equivalence is defined as

functional equivalence, that is, both the original and the

Ada translation will produce the identical output given

identical input. Also included here is efficiency. To the

highest degree possible, given the limitations of the unval-

idated Ada compilers, the kda translations are as efficient

as possible in terms of processor time and storage used

(8:4).

The quality of the translated code is the other

important characteristic to be considered during a transla-

tion. The code should be "readable, easily understandable,

and embrace the style and lntent of the language in which it

is coded. Translations should also result in robust imp-

29

lementations, using to the fullest extent possible the power

of the target HOL" (8:5).

To satisfy all of the above requirements, each original

projram under went two translations: a line-by-line transla-

tion and a complete redesign.

Line-by-line Translation. In this translation, the

original was translated with a one-to-one correspondence

between the original and the Ada code to the highest degree

possible within the constraints of the language. Sections

of code not translatable in this manner were functionally

translated and annotated as such, maintaining the existing

structure and flow as much as possible.

This type of translation is done to establish a baseline

of functionality (i.e. identical output given identical

input), and efficiency against which to compare the original

programs and the complete redesign translations.

Complete redesign. In this translation the prime

consideration with respect to the original is functionality.

In order to use and exercise the large and powerful set of

constructs available in Ada, the original problem is solved

using object-oriented design, a design methodology described

by Booch (2:40-44).

Measurements

Using the above mentioned translations, this study

measures the lifEerences and similarities between the trans-

30

lated and original programs. The following qualitative and

quantitative measurements are made on the programs:

1. Functional Equivalence. The most important

question to be answered in this study is to determine if the

output from non-embedded applications can be replicated

using Ada. The first measurement of this study compares the

output generated by the original programs with the output of

the Ada translated programs. To insure functional equiva-

lence of the programs, it is essential that identical input

be used for each related program.

To determine functional equivalence, this measure

requires a qualitative assessment of the output. If the

output is not identical, this study explains the consequenc-

es leading to the deviations. Specific areas addressed are

the differences/similarities in I/O, real number precision

and other factors which ciuse differences in the output

between the original and translated programs.

2. Storage Efficiency. This measurement

determines quantitatively the number of lines of source code

necessary to replicate the original program's output, and

the amount of storage space required in the runtime system.

This measurement determines the storage space efficiency of

Ada as compared to the other languages in the given applica-

tions. This measurement also involves a qualitative assess-

ment of the reasons creating the differences, if any.

31

3. Execution Efficiency. This measurement

involves comparing the execution runtimes of the original

programs with those of the translated programs. This meas-

urement determines the execution time efficiency of Ada as

compared to the other languages in the given application.

4. Maintainability. This measurement is a

qualitative assessment of the types of errors encountered

while:

a. Debugging the original programs when ini-

tially running the prograns on the Unix operating system.

b. Debugging tne Ada translated programs.

This measurement directly relates to the next measurement,

which is transportability. In this study, transportability

involves compiling the programs on different compilers.

5. Transportability. This measurement is a

quLaititative measurement of the number of changes required

to compile both the original and translated programs on

different compilers. 3pecifiza .ly %e coapilars used are:

a. Ada: TeleSoft, version 1.5, TeleSoft,

version 2.2, and Verdix, version V04.06.

b. FORTRAN: Microsoft's FORTRAN-80, FORTRAN

Extended Version 4 and the FORTRAN 77 compiler Jeveloped by

Bell Laboratories, August 1978.

c. Pascal: Berkeley Pascal Compiler, Version

2.0.

32

-... -. . . .r...

6. Readability. This measurement is a

qualitative assessment of the ease of understandability of

the source code of the original and translated programs.

This is demonstrated by selecting identical portions of the

original and translated programs and allowing the reader to

make his or her own assessment as to the readability of the

compared source codes. Identical portions of a program is

defined here as parts of a program performing an identical

function, for instance reading a file, departing a queue,

ect.

7. Miscellaneous. This study also records

any firdirijs important to the overall evaluation of the

language in the chosen applications.

33

... ~ d~"

IV. FINDINGS AND ANALYSIS

introduction

This chapter presents and analyzes the findings of this

study. The Findings and Analysis Ciiapl-r presents the

findings of the numerical computation application, the

simulation application and the interactive text file pro-

cessing application as they apply to the research questions

proposed in chapter one. The original progrims, translated

programs, and the output for these programs which generated

the data for these findings, are found in Appendices A

through AM.

The program chosen to evaluate Ada's suitability in

nunerical computation applications was originally written in

FORTRAN and is titled TRAP3. TRAP3 computes the approximate

area under a curve described by a function defined in the

program using the Trapezoidal Method. The original program

consisted oC a -ain program and one subroutine. The origi-

nal TRAP3 program is found in Appendix A. The Ada line-by-

line TRAP3 programs are found in Appendices B, C and D. The

Ada redesign TRAP3 programs are found in Appendices E, F, G

and H (15: 207-208).

The program chosen to evaluate Ada's suitability in a

similation application was originally written in FORTRAN and

34

is titled TRUCK. TRUCK is a simulation program that models

a single server queue with interarcival times of 0.33 per

hour and service times of 0.25 per hour. The program out-

puts a variety of results corresponding to the simulation.

The original program consists of a main program and six

subroutines. The original TRUCNY progra.ns are found in

Appendices I and J. The Ada line-by-line TRUCK programs are

found in Appendices K, L and M. The Ada redesign programs

are found in Appendices N, 0, Q and R (1: 76-83).

The program chosen to evaluate Ada's suitability in

file processing was originally written in Pascal and is

titled LIBLIST. LIBLIST is an interactive text file proc-

essing program which updates a library file system. The

original program LIBLEST consists of a main program and five

procedures. The original LIBLIST program is found in Appen-

Jix S. The Ada line-by-line program is found in Appendix T.

The Nda redesign programs are found in Appendices U, V and W

(22: 217-225).

'ne findings of this research are organized as they

pertain to the research questions ?roposed on page five. In

presenting the results of this research, the findings of the

line-by-line translation are presented first, followed by

the Xda redesign translation findings.

35

" " ' " " - " " - - " ". " - " "- " " - - " -.. ' ----. ' ' " ' .. .-.= - .-.' ' ' " -' - -" -" - ---.-- - .
• -.., ,,, -.- ,. .. ,,.,m.- , ,, ,.k.,,-.., m b f ai. m ". " ." ."" : 1 " -""- "" ;"-" :]" [' ""

Functional Equivalence

Research question one addresses functional equivalence.

In this crh., fie,:tional e,aiu\alence defines the extent

to which programs translated in Ada replicate the output of

the original programs. The results of conparing the outputs

generated during this research indicated that the Ada trans-

lated programs dt,1 celicate the original programs. Howev-

er, there were slight differences and difficulties encoun-

tered daring the resear.', they are addressed below.

Output listings for the orLginal programs are found in

Ajpendicas X, DD, EE and KK. The Ada output presented below

is taat generated while using the Verdix compiler.

Outut fr., tn, , line-by-line translation of the

TRAP3 progrin resulted in virtually identical output when

compared to the original FORTRAN program. rhe TRAP3 FORTRAN

and Ada line-by-line translation outputs are in figures I

and Il.

Trapezoidal integration with end correction

1 4.44444
2 1.73335
4 2.13427
8 2.19111

16 2.19675
32 2.19719
54 2.19722

128 2.19723

a= 2.19723

Fig 1. FORTRAN: TRAP3 Output

36

.

.-.- .-.,.. - ...• -".... -.-.- . ' .•'v -. - . -'-'i '- .- J L °L- .> . ->••,.,> - "' -.•

Trapezoidal integration with end correction

1 4.44444444E+00
2 1.70534979E+ 0

4 2.13427396E+00
8 2.19110817E+00
L6 2.1)675417E+00
32 2.19719294E+00
64 2.19722256E+00

128 2.19722445E+00

Nrea = 2.19722445E+00

Fig 2. Ada: TRAP3 Output (Line-By-Line)

The onLy difference in the two TRAP3 outputs is the

precision of real numoers used in performing numeric compu-

tations. From the output, AJ] expressed nine digits of

precision, whereas the FORTRAN output expressed six digits

of precision.

This difference is easily rectified using the

facilities of Nda. While FORTRAN does not allow designating

the precision of real numbers, Ada has such a facility. By

decl3ring in AJA, 'type six is digits 6;', the precision of

oojects declared as type six are constrained to six digits

of precision. Therefore, executing the %da program with

objects of type six instead of type float, results in output

identical '-) that of the FORTRAN program. The Ada output

with six digit precision is in figure III.

37

-,' - i°' . .':i- :'."-' ----"../ #' .":-'-,":-'-,'-':- :'.--i<:'.'- ,¢.':' :'-.-.....-.....--.....-.,'..-'.-..-......-....-.'-"..-.-......-.-.-... -. ,'.

Trapezoidal integration with end correction

1 4.-.4444E+00
2 1.70535E+'0
4 2.13427E+00

"-"6 2.19111E+00

15 2.19675E+00
32 2.19719E+00
64 2.19722E+00

128 2.19723E+0

Area = 2.19723E+0

Fig 3. Ada: TRAP3 Output (With 6 Digits Precision)

A '.)L it of comparison, 4ien using the 1.5 TeleSoft

:nDpiler, real number precision was eight digits, indicat-

ing that, default real number pr; i>i,)n is implementation

lependent. rhe source code listings for the Ada line-by-

* . ;I . , iing the TeieSoft-Ada compiler version 1.5

* .- ;Pendi 3. The output listing is in Appendix Y.

:: e~~ 4~ "_ein -i the I i -i[r_ -in slIa t ion,

" irn oDtp'it identical to that of the ori-jinal.

t~ listings for the default FLOAT version and the Ada

r-iesigi six Je--ni. iijit version are given in Appendices

33 3-i ely. Output listinjs for the Ada line-

0,y-lne programs using the Vads compiler are given in Appen-

lices and AA.

.---- - --- . --.- ',.- -- .- .- -" . -. -" .' -' " --' , -. .-,

Tne FORTRAN TRUCK program and the Ada line-by-line

translation resulted inj ,inilar output. Agairi, as in TRAP3

precision factors created a slight difference in the output.

T:- rRUCK FORTRAN and Ada line-by-line outputs are in fig-

ures IV and V.

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
Q LI J LE.

DSEEO = 0.56700000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.73

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME TO TRANSIT SYS. 0.80 HOURS..

PROPORTION OF TRLJCKi TAKINqG FOUR OR MORE HOURS.. IN THE

SYSTEM 0.01

SIMULATION RUN LENGTH 509.36 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS JSED = 3007

AVERAGE NUM3ER OF UNITS IN SYS.= 2.373

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1207.228
(,raJC.S PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547

Fig 4. FORTRAN: TRUCK Output

39

::::: ::::: ::::::::: :::: ::::::::: ::::: :::: ::::: :::::::: : :: :: :: : :::: ::: :: :

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

OSE20= 3.67000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.30942503E-01

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME ro TRANSIT SYS. 8.04808941E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 6.66666667E-03

SIMULATION RON LENGTH 5.09356313E+02HOURS.

NUMBER OF TRUCKS UNLOADED 1500

NUMBER OF RANDOM NUMBERS USED = 3007

AVRAG6 NUMBER OF UNITS IN SYS.= 2.37007647E+00

rOrAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.20721341E+03 (TRUCKS PER HR)

AVEPGZ NUMBER OF ARRIVALS PER HR= 2.95470962E+00

Fij 5. %da: TRUCK Output (Line-By-Line)

1he precision problem created a few difficulties in

replicating the FORTRAN TRUCK output into the Ada output.

In the TRUCK progrLn it was necessary to generate random

numbers. To have identical output, the random number string

generated for the original and translated programs had to be

il ntical. To insure this, the original TRUCK program was

nodified to include a random number generator subroutine

'gguos' which was common to ;h pcogJr2.s. 3owever, even

40

with an identical 'ggubs' subroutine, the precision differ-

ence in performing operations of real numbers created two

different strings of random numbers, thus resulting in two

diff-cent outputs. This was rectified as in TRAP3 by desig-

nating the digits of precision in the Ada subroutine

'ggubs' to six, therefore the random number strings were

identical, resulting in similar output. The 'ggubs' subrou-

tines are found in Appendices I and L.

Another difference in the outputs is that the number of

digics of precision actually in the FORTRAN output can be

limited by the formatting features of FORTRAN. The FORTRAN

formatting statement allows the designation of the number of

Jigits to be output for real numbers and integers. Ada

lacks the necessary library packages needed to duplicate

this feature of FORTRAN's formatting capability at present.

However the same results could be generated using Ada by

declaring types with the required precision and by then

explicitly converting the values to the designated type

prior to outputting. For example,

type six_digits is digits 6;

sum : float;

begin

sum := 1.0/3.0;

new six six digit(sum);

41

0

in this case sum is expressed as 0.33333333E00 while new-six

is expressed as 0.33333E00.

The output of the Ada redesign of TRUCK experienced the

same problem of generating identical random number streams

as did the line-by-line translation. The problem was

overcome in the manner described above.

While the line-by-line translation generated output

almost identical to that of the original FORTRAN version,

two of the performance ineasures generated by the Ada re-

design consistantly deviated from the line-by-line transla-

tion and original by one.

One of the measures which differs is the maximum queue

length. The deviation is due to differences in the main-

tenence of each programs' respective queue.

When an arrival is generated in the Ada redesign

program the queue length index is bumped and the arrival

time is stored in the queue at the position given by the

index irrespective of the condition of the queue. The

index, tnerefore, always points to the last element in the

queue. The FORTRAN original and line-by-line translation

check the condition of the queue and if the queue is empty

then the arrival time is nard-coded into the first element

in the queue but the the queue length index is not incre-

mented. The index is bumped only when tne queue is not

empty; the index is always one less than the number of

elements in the queue. To prevent the last element in the

42

queue froin being overwritten, the progran indexes the queue

with a local variable assigned the value of the sum of the

incremnented queue length index and tne queue busy flag.

The relevant code is shown in figure VI.

IF(LST.3.Q.l) GO TO 20
LST=1
CHKOUT(i)=CLOCK

GO TO 100
20 LQT=LQT+I

I=LQT+LST

C KOUT(I)=CLOCK

iF(LQT.GT.MQ) MQ=LQT

1,00

Wnere

LST = Queue busy flag.
C HKOUJT = Queue.
CLOCK = Current system time (arrival time).
LQT = Queue length index.
MQ = Maximuma queue length.
I = Local variable.

Fig 6. Check of Queue Condition

Since the queue length in3ex is always one less than

the actual number of elements in the queue, the maximum

jueue length will oe likewise. Therefore, the original

FORTRN code which indexes the queues is in error, and the

Nda redesign ?r)j,-i' :)rop cly indexes the queue. This

explains the difference in the maximum queue length output.

43

The other difference in output between the Ada redesign

and the original is in the measure of the number of random

numbers used in the simulation. The Ada redesign is appar-

ently always one low. In fact, the number given by the

redesign is the actual number used in both programs. The

apparent deviation is due to differences in the way each

random number is picked from the stream in the two programs.

The redesign initializes the count to zero and bumps it

immediately before the number is used, while the original

initializes the count to 1 (the array index) then bumps it

immediately after the number is used. The index will always

be pointing to the next (unused) random nuinber in the stream

and will be one high at the conclusion of each iteration of

the simulation.

Output listings from the Ada redesign translations of

TRUCK are in Appendices II and JJ. The Ada line-by-line

output listings are in Appendices FF, GG and HH.

A comparison of the output for the Pascal LIBLIST and

Ada line-by-line LIBLIST is identical. No difference is

evident in the manipulation of output between the two pro-

grams. A sample of the Pascal LIBLIST and Ada line-by-line

LIaLIST output is in figure VII.

44

.. "-- -'-- -- ,.im- .','..-. 1, imidli~ .mm -- . . ." '.... . . , •

WAR AND PEACE
LEO TOLSTOY

100
TOM SAWYER
MARK TWAIN

200
INTRODUCTION TO PASC
RODNAY ZAKS

300

END OF LIBRARY FILE

Fig 7. Sample of LIBLIST Output

The only differences between the output of the Ada

redesign of LIBLIST and the Pascal and the line-by-line

translation are cosmetic: the format of the menu and output

listing are different. Though the line-by-line translation

nd the redesign use different techniques to accomplish the

objective, (linked-list using access types versus chained

lisa) ;il three programs will insert and delete a book from

the list, as well as print the list in ascending order by

call number. Source code listings for each of the LIBLIST

programs are in Appendices S, T, U, V and W. Output list-

ings for each of the LIBLIST programs are in Appendices MM,

LL and MM.

Storage Efficiency

Research question two addresses the degree of

difference in the lines of source code and the size of the

executable code files required to duplicate the output

45

between the translated and original programs. As a note of

clarification, for this study a line of source code is

defined as follows:

1. A carriage return iepicts a line of source

code.

2. Comment lines and blank lines are not counted

as a line of source code.

In comparing the Ada line-by-line prograns against the

original programs, the Ada programs required more lines of

code to replicate the FORTRAN output, and virtually the same

number of source code lines to replicate the Pascal output.

The number of lines of code required in the Ada and the

original programs are outlined in Table I.

TABLE I

Lines of Source Code

TRAP3 TRUCK LIBLIST

FORTRAN 37 218 --

Pascal 197

Ada (line) 59 253 201

Ada (redesign) 98 313 209

The primary areas which created the differences in the

required source code in the FORTRAN versus Ada line-by-line

code were:

46

1. Declaration and Initilization of Objects. In

the Ada TRUCK program, the main program required the decla-

ration of 22 objects and three types within the specifica-

tion part of the program. This was necessary so that the

objects could be passed as arguments and be visible in the

subroutines. The FORTRAN program on the other hand used two

common statements to make the objects visible within the

subroutines. Quantitatively the specification part of the

Ada line-by-line TRUCK program had 21 lines of code, while

the declarative portion of the FORTRAN program had 12 lines

of code.

Although FORTRAN can declare and initialize variables

in fewer lines of code, and in fact does not require the

explicit declaration of variables, Ada requires the declara-

tion of all types and variables which aids in the maintain-

ability, understandability and the capability to debug pro-

grams.

2. Language Feature Differences. A few

differences in the type of features the FORTRAN and Ada

languages support, created a few lines of difference in the

coding. Since Ada does not have the FORTRAN feature of

statement functions, the line-by-line translation required

two additional functions in the TRAP3 program. The FORTRAN

TRAP3 used the two statement functions:

F(X) = 1.3/X and DF(X) = -I.0/(X*X)

47

whereas Ada necessitated writing two functions to duplicate

the above statements. The two additional functions required

ten additional lines of code, i.e. inclusion of specifica-

tion and body parts, and the return statement. This differ-

ence can be seen in Appendices A and C.

In the main body of the FORTRAN TRUCK program the

conditional goto and the goto statement was used four times.

Ada does have a goto feature, however, since Ada does not

promote the use of goto statements, it was not used in the

TRUCK line-by-line translation. Instead, an if-then-else

structure was used to replicate what the original program

was doing with the goto statements. Using the if-then-else

created additional lines of code over the goto.

To demonstrate the goto in Ada, it was used in the

TRAP3 program. Appendix C demonstrates the use of the goto.

It basically operates in the same manner as in FORTRAN,

however with limitations. The scope of an Ada goto is

limited in that the execution of a goto can not transfer

control into a compound statement such as an if, loop,

accept, case, block, or accept statement, i.e. Ada gotos may

transfer control only within the same lexical level.

3. I/O Differences. The single largest

difference in the number of lines of code required to repli-

cate the original FORTRAN outputs involved differences in

output facilities. The FORTRAN provision of formatting

48

• -.,: ... -- -. : -...,,.....- .,. .?... .'-- . - ". -: . .: . -... - . ,-: - ... -- ,-...... - .-. -- ...- . . .- ,' . , -.-. -" ,.. . .

allowed the FORTRAN programs to output results in fewer

lines of code than the Ada line-by-line programs. It re-

quired 22 additional lines of Ada TRAP3 code and 35 addi-

tional lines of Ada TRUCK code to replicate the original

output in Ada. Reasons include; attaching the TEXT_10

package, instantiating the generic floatio and integerio

packages, and the number of put and new-line statements

required. Appendices A, C, I and L show the [/0

differences.

As is shown in Table I the Ada redesigns required

significantly more lines of code than the FORTRAN originals.

In addition to the reasons given for the differences between

the originals and the line-by-line translations, two others

account for the additional lines needed to duplicate the

original Ada.

First, in both the TRUCK and TRAP3 programs, the Ada

redesign encapsulated type and subprogram definitions in

packages. This construct requires each subprogr n specifi-

cation to be entered in the package specification as well as

the package body, resulting in code redundance.

Another cause of the increase is the way the code was

assembled to enhance readability. This accounted for most

of the additional code.

Included here would be individual object declarations,

even for objects of like type. An example might be:

49

....- ..-.--..-...-.................-..,.............

UPPER BOUND : FLOAT;
LOWERBOUND : FLOAT;
TOLERANCE : FLOAT;
AREA : FLOAT;

rather than

UPPERBOUND, LOWERBOUND, TOLERANCE, AREA : FLOAT;

Another technique was to break long lines of code into

smaller, more readable lines such as:

AREA := (F(LOWERBOUND
+ F(UPPERBOUND))
* (UPPER_BOUND - LOWERBOUND)

/ 2.0;

rather than

AREA := (F(LOWER BOUND + F(UPPERBOUND)) * (UPPERBOUND
- LOWERBOUND) / 2.0;

There was very little difference between the Pascal,

Ada line-by-line, and Ada redesign LIBLIST programs. This

could be expected since Ada is a Pascal based language. The

Pascal program required 201 lines of code, the Ada line-by-

line required 197, and the redesign required 209. The

difference being accounted for by instantiating the integer

output package in Ada and the use of packages in the Ada

redesign.

To compare the size of the executable code files the

'ils -al' command on the UNIX operating system was used.

This command shows the size of the executable code files in

bytes. In all cases, the Ada code required more bytes if

storage space for the executable code. Table II shows the

size of the files required.

50

......

TABLE I I

Size Of Executable Code Files

rRAP3 TRUCK LIBLIST

FORTRAN 36864 40960 --

Pascal 26624

Ada (line) 63488 69632 64512

Ada (redesign) 64512 68608 68608

Probable reasons for the size discrepancy of tne

executable code is the refinement of the compilers. The

early versions of the Ada compilers are obviously less

efficient, as can be seen by comparing the Pascal LIBLIST

and the Ada line-by-line LIBLIST programs. The two men-

tioned programs are of the same relative size and are per-

forming the same functions, however the size difference of

executable code files is quite considerable.

Execution Efficiency

Research question three addresses execution efficiency.

The Unix 'tine' command was used to find the CPU times.

Running each of the programs five times each resulted in the

average execution times as shown in Table III.

51

TABLE III

Execution Times

TRAP3 TRUCK

FORTRAN 0.02 sec 0.67 sec

Ada (line-by-line) 0.04 sec 8.12 sec

Ada (redesign) 0.083 sec 5.18 sec

The Ada program in all cases required more CPU time to

execute the programs. The probable reason for the difference

is that the FORTRAN compiler is a more refined, more ad-

vanced generation conpiler, whereas the Ada compilers are

qirtually in their infancy.

The CPU runtime of the Pascal LIBLIST programs were not

recorded. Due to the nature of the Pascal LIBLIST program,

i.e. an interactive text file processing program, finding

execution times did not appear to be of any relevance to

this research. However, in executing the programs there was

noc any noticeable differences in response time between the

Ada and Pascal programs.

Maintainaoilit_ and Transportability

Research question four compares the maintainability and

transportability of Ada programs against that of the select-

ad programs. The manner in which this question was handled

52

was oy first describing the problems encountered and the

actions that were necessary to compile and execute the

original programs on the UNIX system with the available

facilities (compilers). Second, describe any differences or

problems encountered in translating the original programs,

and third, address the problems faced in compiling and

executing the Ada programs on the different Ada compilers

available for this research. By the description of the

above actions, subjective conclusions can be drawn on this

important feature of a programming language.

The original TRAP3 program was taken from FORTRAN for

Scientists and Engineers by Alan R. Miller. The original

program was compiled with Microsoft's FORTRAN-80, Version

3.4 compiler.

The original TRAP3 program called for passing two

statement functions from the main program as arguments to a

subroutine. The FORTRAN 77 compiler used in this study

would not allow such an operation. The changes necessary to

compile and execute the program involved placing the state-

ment functions directly within the subroutine. Therefore

one major change was required to compile and execute the

original TRAP3 program.

The Ada line-by-line translation of TRAP3 was

originally compiled on tne TeleSoft 1.5 compiler. In trans-

lating to Ada, the only difference encountered in the coding

was the lack of statement functions in Ada. The Ada trans-

53

lation as mentioned before, required writing functions to

represent the FORTRAN function statements.

LThe output of the TRAP3 program run with the Verdix

compiler was slightly different because of the size of the

largest integer. The output was shifted five spaces to the

right on the screen because integer last under Verdix is

2147483647 whereas it is 37567 under TeleSoft 1.5., indi-

cating implementation dependence.

The result of this is that the FORTRAN TRAP3 program

required one syntax change in order for the program to

compile and run, whereas the Ada TRAP3 program when moved

from the TeleSoft 1.5 to the Verdix compiler had zero syntax

errors and successfully compiled and executed.

The original TRUCK program was taken from Discrete-

Event System Simulation by Banks and Carson, and modified

and compiled with the FORTRAN extended version 4 compiler.

The original TRUCK programs are found in Appendices I and J.

When the FORTRAN TRUCK program was transported to the

UNIX system and compiled with the FORTRAN 77 compiler, the

following conditions existed:

1. The original program made access of the IMSL

library subroutine 'GGUBS' to generate random numbers. When

transported to the UNIX ASC system initially, IMSL was yet

to be implemented, therefore the program could not compile.

The program was modified by writing a random number genera-

tor subroutine called GGUBS also.

54

2. The original FORTRAN program consisted of 3000

customers (trucks) and an array of dimension 6500 with real

number elements (random numbers). Due to a storage problem

with the Ada compiler, which will be explained later, the

TRUCK problem was reduced to have 1500 customers and the

need for only 3500 random numbers. To modify the FORTRAN

TRUCK program to include the lesser number of customers and

random numbers required one change involving the number of

customers (NCUST=3000 to NCUST=1500), and eight modifica-

tions were necessary to change the number of random numbers

required and the dimension of the random number array (NR=6-

500 to NR=35J0 and seven changes to R(6500) to R(3500) which

was in each of the common blocks).

In contrast, modifying these two changes in the Ada

line-by-line TRUCK program required only two modifications

to the program (NR:=3000 to NR:=1500 and by declaring an

array type 'type RN is array (integer range 1 .. 6500) of

float;' only requires the 6500 be changed to 3500 once.

The Ada line-by-line TRUCK program was initially

compiled with the TeleSoft 2.2 version. The following

problems were encountered with the Ada line-by-line program

in developing successful output:

1. The TeleSoft 2.2 compiler severly restricted the

array size. Although the Ada TRUCK program with an array

dimension of 6500 would compile, it would not execute. The

following execution error was raised: "Storage Error

55

.

(SecStockOverflow) Raised in Main Unit on Line # 83."

Line 483 pointed to the subroutine 'GGUBS'. In trying

4different array sizes, the largest dimension the TeleSoft

2.2 would support was an array of size 622.

2. Compiling the same program with a 6500 dimensioned

array with the 1.5 TeleSoft compiler resulted in the

following compilation error: "Error: Data Size of Seg: 1

Proc: 1 is too big." Using different array sizes, the

dimensional size of approximately 4000 was the extent the

1.5 TeleSoft compiler could support. Therefore the original

TRUCK program was inodified to use 1500 customers and a 3500

dimensioned array of random numbers.

* 3. Truncating versus rounding of numbers created

problems in maintaining the Ada program. This problem was

encountered in generating the random number string. The

random number generator alogrithm required the explicit

conversion of real numbers into integers. In the expres-

sions:

X = 2.7762

Y = INTEGER(X)

the FORTRAN 77 compiler truncates the value to 2. The Ada

1.5 TeleSoft compiler rounded the value to 3. Therefore the

Ada 'GGUBS' subroutine required modification. However, when

using the Verdix compiler, the above Y value is truncated to

the value 2, so again the 'GGUBS' subroutine required modi-

fications again. All of this indicated that the explicit

56

.. o

", -: :....... . ,-'..,......'&.....,--_> ' -, . ,.-';-;...' .,. .

conversion from real to integers is implementation depend-

ent.

Converting from the TeleSoft 1.5 to the Verdix required

modifying the random number generator as mentioned above.

Other minor differences experienced included getting warn-

ings for objects passed as arguments in subroutines without

being initialized, and the need to attach a package with the

natural log function for the service time and arrival time

alogrithm. Natural logs are an intrinsic function of FOR-

TRAN, however such functions are not standard in Ada.

Therefore, a natural log function was written and encapsu-

lated within a package. The natural log function is found

in Appendix P.

The original LIBLIST program was taken from

Introduction to Pascal, Including USCD Pascal by Rodnay

Zaks. The LIBLIST program involved processing a library

file to include inserting and deleting records to a text

file. The program was modified to include a procedure for

convenience which involved viewing the entire library file

interactively. The original Pascal LIBLIST is found in

Appendix S.

In transporting the Pascal LIBLIST program to the UNIX

system with the avaliable Pascal compiler, only one major

change was necessary to compile and execute the program

LIBLIST. The original LIBLIST program as extracted from the

text was typed entirely in upper case. The Pascal compiler

57

..

would not compile keywords, types and filenames entered in

upper case.

Since the TeleSoft 1.5 compiler does not support

generics and the TeleSoft 2.2 compiler was removed from the

operating system the research was conducted on, the Ada

LIBLIST program used the Verdix compiler exclusively.

In writing the Ada line-by-line LIBLIST program, there

were no portions of the Pascal program which could not be

duplicated due to the similarity of Ada and Pascal. The Ada

and Pascal code was very similar. The original program used

access types to link the library files in numerical order.

Ada has incorporated the access type feature, and with very

few syntax differences functions exactly the same as the

Pascal access type.

In the Ada redesign effort, all three original programs

were translated, compiled, and executed using the Verdix

compiler. However, since tvie Telesoft-Ada compilers were

removed from the system upon installation of the Verdix

compiler, only the TRUCK program was compiled with the

Telesoft software. No comments can be made regarding the

transportability of the redesigned TRAP3 and LIBLIST pro-

grams.

When transporting the Ada redesign of TRUCK from the

Telesoft to the Verdix compiler no code changes were re-

quired in the main (calling) program and only the instanti-

ation of FLOATIO and INTEGERIO was required to successful-

58

...

ly compile the SIMULATION ROUTINES package. As with the

*novement of the line-by-line translation from Telesoft to

the Verdix compiler, the same changes for the same reasons

were necessary in the redesigned program for proper execu-

tion with the Verdix.

Source Code Readability

Research question five addresses source code

readability. The readability of Ada code is hailed as one

of the language's key features. This section presents the

findings on the differences between Ada source code and the

original programs' source code.

While Ada affords the programmer a rich set of tools

with which to compose very readable code, it is apparent

after even a cursory inspection of the Ada line-by-line

translations that it is possible to write bad code in Ada.

The Ada redesign effort was to translate the original code

into Ada using all of the language features necessary to

produce structured, readable and functionally equivalent

code.

In addition to using the built-in features of Ada

designed to enhance structure and readability, the program-

.ner used the following conventions in coding the redesigned

programs:

1. Individual object declarations.

2. Grouping of objects of like type at declaration.

59

3. Vertical alignment of the colon (:) and assign

symbol (:=) at object declaration/initialization.

4. Indent all code between program unit and begin

clauses and between begin and end clauses.

5. Follow standard rules of indention for loop, if,

and case structures.

6. Vertical alignment of the goes-into symbol (=>) in

subprogram specifications, calls, and case structures.

7. Vertical alignment of the assign symbol (:=) when

possible in lists of assignment statements.

8. Use of object names as meaningful as possible.

9. Use of lower-case for all Ada reserved words and

attribute invocations, and upper-case for all object names

and type marks.

By following these rules as closely as possible the Ada

redesign effort achieved significant improvements in reada-

bility and understandability over the original code. One of

the bast examples of this improvement is the difference

oetween the calling programs of the FORTRAN and Ada redesign

of TRUCK. The FORTRAN code is shown in figure VIII.

It is apparent that the author of this code had no

concern for the readability of the software as none of the

rules listed above were followed. Even the comments, rather

than enhance the readability of the code, tend to clutter

the code.

60

C TRUCK PROBLEM-VARIANT OF PP 77-82 IN BANKS AND CARSON.
PROGRAM TRUCK
REAL MIAT,MSVT
INTEGER NR
COMMON /SIM/ MIAT,MSVT,NCUST,LQTf,LST,TLE,
iC-HKOUT(10),B,MQ,S,F,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL (2) ,XXT
II=l
DSEED=567.0

1 NUMEVS=2
MIAT= 1.0/3.0
MSVT=.25
NCUST=1i30

C WE WILL USE GGUBS TO GENERATE A STRING OF RANDOM #'S
C ROUTINE GGUBS

NR=3500
CALL GGU3S(NR)

C IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR=I

C CALL INITIALIZATION ROUTINE
CALL INITLZ

C
C
C CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
C AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.

30 CALL TIMADV
C
C VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
C IMEVT= FOR AN ARRIVAL.
C IMEv-r=2 FOR A DEPARTURE.

GO TO(40,50),IMEVT
40 CALL ARRVL

GO TO 30
C CALL OEPARTURE ROUTINE

50 CALL DPART

C CHECK tO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO

C #30
8 IF(ND.LT.NCUSr) GO TO 30

IFtII.EQ.1) DSEED=567.0

IF(II.EQ.10) DSEED=2717.3

CALL RPTGEN
C WHEN SIMULATION OVER GENERATE REPORTS.

STOP
END

Fig 8. Sample of FORTRAN Source Code

61

' "-'- - - w am .~ ro .@.

with SIMULATIONROUTINES ; use SIMULATION-ROUTINES;

procedure TRJC< 3C;4fJCjA2ION is
MEAN INTER ARRIVAL TIME FLOAT :1./3.0;

MEAN SERV1IC-1' P 'L V FLOAT 0.25
SrATS STATISTICS;

SERVICE QUEUE : QUEUE;
RANDOMNUMBER . RANDOANUABER RECORD;

begin
while STATS.REPETITION < 13 loop

INITIALIZE (STATS,

MEAN INTER ARRIVAL TIME,
RANDOMNUMBER);

while 3Ais.TOTA DEPARTURES < 1500 loop
if STATS.NEXT ARRIVAL < STATS.NEXTDEPARTURZ then

GENER8T:- ARRIVAL (STATS,
SERVICEQUEUE,

MEAN INTER ARRIVAL TIME,

MEaN SERVICETIME,

else
GENERATEDEPARTURE (STATS,

SERVICE QUEUE,
MEAN SERVICE-TIME,
RANDO _' NJBE R) ;

end
if;

end loop;
GENERATE-REPORT (STATS,

SERVICE QUEUE,
MEAN _4" A 2RRIVALTIME,
MEAN--hERVICE TIME,
RANDOMNUMBER);

end loop;
end TRUCKSIMULATION;

Fig 9. Sample of Ada Redesign Source Code

T \'3 Adaredesign version is shown in figure IX. The

iifference is striking. The code is clean, understandable,

struztucu- d, and functionally e lai.lnt. The problem of

62

overly long argument lists, which may have been a concern

due to Ada's lack of the 'common' statement, was overcome by

building record types of related data objects

(RANDOM_NUMBERRECORD, STATISTICS, QUEUE) and passing the

record objects. While each of the rules listed above as

well as features built into the language (end if, end loop,

begin/end etc.) enhance the readability of Ada code, the

most significant feature of Ada with regard to readability

is the capability to create meaningful type and object

names.

Again, the TRUCK program provides a good example. The

FORTRAN and Ada code which initialize variables before each

iteration of the simulation is shown in figures X and XI.

The lack of meaningful variable names in the FORTRAN

routine due in part to FORTRAN being limited to variable

names not exceeding six characters, makes the code very

difficult to follow. To translate the code the Ada program-

mer was forced to use the strings printed in the report

generating routine to decipher many of the names. The Ada

code, however, with the use of meaningful names, is easy to

follow and leaves the reader with little doubt as to the use

of a given variable.

63

' ---. ----- ...~~................................ -- -•• .i.; . -.". -.-"."...-......;...

SUBROUTINE INITLZ

REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,

-LST,TLE,CHKOUT(100) ,B,MQ,S,F,ND,
211R,R(6500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C
C SET SIMULATION CLOCK TO ZERO.
C ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
C INITIALIZE CUMULATIVE STATISTICS 20 0.

CLOCK-0.0
IMEVT=O
LQT=0
LST=0
TLE=O
B=0
MQ=O
S=0
F=O
ND=J

C GENERATE TIME OF FIRST ARRIVAL,IAT, AND SCHEDULE FIRST
C ARRIVAL
C IN FEL(1)K.SET FEL(2) TO "INFINITY" TO INDICATE THAT A

*3AAPARTURE IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY.
RR=R(IIR)

X= -log(RR)
X=X*MIAT
XXT=I .0
FEL(1)CLOCK + X
FEL(2) = 1.OE+30
IIR= [R+l
RETURN

Fig 9. Sample of FORTRAN Declaration and Initialization of
Objects

64

procedure INITIALIZE
STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER NRRIVAL TIME : in FLOAT;
RANDOM NUMBER : in out

RANDOMNUMBERRECORD) is

ARRIVAL TIME : FLOAT;
begin

STATS.REPETITION STATS.REPETITION + 1;
RANDOMNUMBER.DSEED : RANDOMNUMBER.SEEDS

(STATS.REPETITION);
RANDOM NUMBER.COUNT 0;
RAN (R ND3M NUMBER);
ARRIVAL TIME : MEAN INTER ARRIVAL TIME

-* (-LN- (RANDM_NMBER.NUMBER));
STATS.CLOCK : 0.0;
STATS.TIME LAST EVENT 0.0;
SrATS.SSERVER BUSY TIME : 0.0;
STATS.TOTAL_TIME IN SYSTEM : 0.0;
STATS.TOTAL ARRIVALS : 0
ST ATS. rOrAL DEPARTURES : 0
STATS.MAX QLENGTH : 0
STATS.FOUR dOURS IN SYSTEM : 0
STATS .NEXTARRIVAL - STATS.CLOCK

+ ARRIVALTIME;
SrATS.NEXT DEPARTURE : l.0e30;
SERVICEQUEUE.LENGTH : 0;
SERVICEQUEUE.ISIDLE : TRUE;

end INITIALIZE;

Fig 11. Sample of Ada Declaration and Initialization of
Objects

Other Findings

Research question six is included as a catch-all to

allow the discussion of any celevant finding not enumnerated

in the previous five questions. One such finding was uncov-

ered during the Ada redesign of the LIBLIST program.

• ., -i . i -. .', ' '. ' " ' -' ." ' " - .- ' " -- . ' -" .. .' " ." " " " . - -" - " .' . .-.' ...- -. . .--- - .F
":. -- -- .. 1. -,.I~ i ' ' "k" " * ' ":" - "i -" ' ' " ;'' '0 "-" "

With Ada's capability to encapsulate data types in

packages and with almost no restrictions on type names, it

is not inconceivable that identical type names, even identi-

cal type definitions are in more than one package. This

would not present a problem unless more than one of these

packages were simultaneously imported by another program and

an object of the type in question is declared in the using

program. This situation arose during the Ada redesign of

LIBLIST.

LIBLIST maintains a direct-access file of records

stored on disc. Each record contains several fields each

with information for a given book. One of the fields stores

the call number of the book. Another field contains a

pointer which links the records such that when read and

printed while stepping through the chain, the records will

be in ascending order by call number.

The pointer contains the position in the file of the

next record in the chain. When these pointers are used to

read or write records on the file, they must be converted to

a type required by DIRECTIO. That type is defined as:

type COUNT is @..implementation defined;
type POSITIVECOUNT is l..COUNT'last;

In addition to importing DIRECTIO for file access, the

program uses TEXTIO to print prompt strings to the screen.

Unknown to the programmer, TEXTIO has an identical type

definition to that shown above:

type COUNT is O..implementation defined;
type POSITIVECOUNT is l..COUNT'last;

66

The problem was not so much the ambiguity seen by the

compiler, since both packages were directly visible and the

package prefix notation was not used, as was the esoteric

error message given by the compiler to flag the error.

The message, "identifier undefined," initially led the

programmer to believe that the package containing the ambig-

.ous type name was not visible. It was by accident that the

programmer found the type defined in both DIRECTIO (the one

used in LIBLIST) and TEXTIO. The ambiguity was resolved by

using the package name prefix notation when referencing the

type in the importing program. This illustrates the indis-

cri.ninate use of the 'use' clause.

67

....... -..- ...:, i... .

V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The primary objective of this research was to evaluate

Ada's suitability in non-embedded applJ.>tions. A compari-

son of the Ada translated programs against the original

programs, indicated that Ada was a suitable programming

language for the chosen applications.

The research demonstrated that the Ada translated

programs did replicate the output of the original programs.

Chapter 4 eKpao iirt Eew of the features in Ada, such as

designating real number precision, which facilitates the

replication of the oJtput.

Although the findings show that more lines of source

code were required as compared to FORTRAN, it was not in our

opinion a substantial difference. As explained in Chapter

4, in tne Ada redesiqn programs the increased use of source

code contributed to the overall readability of the code.

Concerning the inrpul./output source code differences, the

writing of an Ada I/O formatting package to be used with any

Ada programs would eliminate that difference. Concerning

Pascal, since Ada is a Pascal based language, the Pascal and

Ada line-bi-ILne programs were very similar.

The findings show that the FORTRAN programs run more

efei:iently than the Ada translated programs. Also the

68

. -

FORTRAN and Pascal programs required considerably less space

in executable code files. The probable reason for this is

the degree of compiler refinement. Upon Ada compiler ad-

vancement, these deficiencies may be overcome.

It was difficult to draw any conclusions concerning

the maintainability and transportability of source code.

Although none of the FORTRAN or Pascal programs would com-

pile or execute when moved to the UNIX operating system and

using the available compilers, the Ada programs when used

with different compilers also experienced problems. The Ada

programs experienced no syntax errors when transported

between compilers, but did experience difficulties due to

implementation dependent features. For example, explicit

conversion of real numbers to integers resulted in two

different values depending upon which compiler was used.

The TeleSoft 1.5 compiler rounded the real number, while the

Verdix compiler truncated.

One important maintainability issue was raised in the

findings of the TRUCK program, and that involved the amount

of changes required to modify values of parameters in the

programs. It was shown that changing two parameters like

the number of customers and the dimension of an array in the

FORTRAN TRUCK program required eight changes, while the Ada

TRUCK program only needed two changes.

This difference is primarily due to the strong typing

requirements of Ada. Strong typing can significantly in-

69

• i . ii .. .i .. i 'LI - -', '-- " " ' " " ' -'"" -". " -"-". . . "." ' "

L7 -w 7. W

crease the maintainability of a program written in Ada when

compared to an equivalent program written in FORTRAN.

The capability to write readable code in Ada was

demonstrated by this research. However, the production of

readable code does require a conscious effort on the part of

the Ada programmer. The Ada line-by-line programs showed

little or no improvement in readability, however, the Ada

redesign programs using meaningful object names and types,

sound program structure, and a few other simple programming

techniques, demonstrates the degree of readablility improve-

ment achievable with Ada.

This research did demonstrate that Ada could replicate

the output of the three chosen non-embedded applications.

The objective of replicating the output was achieved, howev-

er results from other areas examined such as execution

times, and storage requirements proved disappointing. The

authors feel that the results from these areas can be im-

proved through the use of mature Ada compilers, and in-

creased programmer experience with the Ada language.

This research covered a wide range of major areas

wriich influence the performance of a programming language.

Due to the range of areas examined, an in-depth examination

of each of the areas was not possible. These areas need to

be examined more in depth.

p.0

.

"'- " • " " " ' " i i i- .- ", i- i i-. .i- i i . . ." 2 i. . -. - .- .- " - '." -' - '- '-

Recommendations

Upon completion of this research it was evident that

more research is required on the Ada programming language.

This research was limited to three non-embedded applica-

tions. Research in other non-embedded application areas is

necessary to fully evaluate Ada's suitability in non-embed-

ded applications. It is also necessary that validated and

more mature compilers be used in any future studies. Only

once tnis is accomplished can a decision be made concerning

the ability of Ada to become the single DOD common

programming language for all application areas.

This research covered a range of language features. A

close examination of the naintainablity and transportability

of Ada source code needs to be accomplished. These areas

are essential for the evaluation of Ada as a common DoD

language.

This research did not evaluate the COBOL programming

language against that of Ada. To determine Ada's suitabil-

ity in business applications, an evaluation of Ada against

COBOL applications would be beneficial.

Finally, the attributes of Ada were not addressed.

Language attributes appear to be one of the strong points of

Ada. A study of the advantages of Ada's attributes versus

features of other languages implementing similar capabili-

ties will provide a more complete evaluation of the Ada

language.

71

. *-.-- - ~ ' '- i m j 'j ":' " ::"" " :' % '" ','7'''

APPENDIX A

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ORIGINAL FORTRAN

c PROGRAM TRAP3

REAL SUM, UPPER, LOWER, TOL
DATA LOWER/1.0/, UPPER/9.0/, TOL/l.0E-5/

c
c f(X) = 1 / X, be careful of X = 0.
C

WRITE(6,101)
CALL TRAPEZ(LOWER, UPPER, TOL, SUM)
WRITE(6,104) SUM
STOP

101 FORMAT(/' Trapezoidal integration with end
1 correction')

104 FORMAT(/' Area =', F10.5/)
END
SUBROUTINE TRAPEZ(LOWER, UPPER, TOL, SUM)

c
c Numerical integration by the trapezoidal method.
c

INTEGER PIECES, I, P2
REAL X, DELTA, LOWER, UPPER, SUM, TOL
REAL ENDSUA, MIDSUM, SUM1, ENDCOR

c
F(X) = 1.0 / X
DF(X) -1.0/(X * X)

c
PIECES = 1
DELTA = (UPPER - LOWER) / PIECES

ENDSUM = F(LOWER) + F(UPPER)
ENDCOR = (DF(UPPER) - DF(LOWER)) / 12.0
SUM = ENDSUM * DELTA / 2.0
WRITE(6,101) SUM

MIDSUM = 0.0
5 PIECES = PIECES * 2

P2 = PIECES / 2
SUM1 = SUM
DELTA = (UPPER - LOWER) / PIECES
DO 10 I = 1, P2

X = LOWER + DELTA *(2 * I - 1)
SMIDSUM = AIDSUM + F(X)

10 CONTINUE

72

.

SUM =(ENDSUM + 2.0*i4IDSUM) *DEL.TA *0.5 -DELTA

1 * DELTA * ENDCOR
4.RITE(6,102) PIECES, SUM

IF (ABS(SUM - SUr41) .GT. ABS(TQL *SUM)) GOTO 5

RETURN
101 IORM T(/' 1', F9.5)
102 FORMAT(1X, 17, F9.5)

END

73

APPENDIX B
I

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION

TELESOFT-ADA COMPILER VERSION 1.5

-- LINE BY LINE TRANSLATION OF THE PROGRAM TRAP3.
-- TRAPEZOIDAL METHOD OF INTECRATION.

WITH TEXT 10; USE TEXT IO;
USE FLOATIO; USE INTEGER_10;
PROCEDURE TRAP3 IS

SUM : FLOAT;
UPPER : FLOAT : 9.0;
LOWER : FLOAT : 1.0;
TOL FLOAT : 1.OE-5;

-- f(X) = 1 / X, be careful of X =.

FUNCTION F (X : IN FLOAT) RETURN FLOAT IS
F : FLOAT;

BEGIN
F := 1.0 / X;
RETURN F;

END F;

FUNCTION DF (X : IN FLOAT) RETURN FLOAT IS
DF : FLOAT;

BEGIN
DF : -1.0 /(X*X);
RETURN DF;

END DF;

PROCEDURE TRAPEZ (LOWER,PPER,TOL,SUM : IN OUT FLOAT) IS

-- Numerical integration by the trapezoidal method.

PIECES, I, P2 : INTEGER;
X, DEL : FLOAT;
ENDD, ENDSUM, MIDSUM, SUMI, ENDCOR : FLOAT;

BEGIN
PIECES : 1;

74

" " " " "' "" " • " .. " . . '"

DEL : (UPPER- LOWER) / FLOAT(PIECES);
ENDSUM := F(LOWER) + F(UPPER);
ENDCOR := (DF(UPPER) - DF(LOWER)) / 12.0;

SUM : ENDSUM * DEL / 2.0;
PUT (" 1 "); PUT (SU4);
NEW LINE;
MIDSUM := 0.0;
<<RE TRN>>
PIECES := PIECES * 2;
P2 := PIECES / 2;
SUM1 : SUM;
DEL := (UPPER - LOWER) / FLOAT(PIECES);
FOR I IN 1 .. P2 LOOP

X := LOWER + DEL * FLOAT(2 * I - 1);
MIDSUM := MIDSUM + F(X);

END LOOP;
SUM (ENDSUM + 2.0*MIDSUM) * DEL * 0.5 - DEL * DEL *

ENDCOR;
PUT (" "); PUT (PIECES); PUT (" "); PUT (SUM);
NEW LINE;
IF (ABS(SUM-SUM1) > ABS(TOL*SUM)) THEN
GOTO RETRN;

END IF;
END TRAPEZ;

BEGIN
PUT(" Trapezoidal integration with end correction");

NEWLINE;
NEW LINE;
TRAPEZ (LOWER,UPPER,TOL,SUM);
NEW LINE;
PU --(" Area -") ; PUT (SUM) ;
NEW LINE;

END TRAP3;

75

j- ,*. *. ** . .l .. - , . . . * . ..* * -

APPENDIX C

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ADA LINE-BY-LINE TRANSLATION USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.06

-- LINE BY LINE TRANSLATION OF THE PROGRAM TRAP3.
-- TRAPEZOIDAL METHOD OF INTEGRATION.

WITH TEXT_IO; USE TEXTIO;
PROCEDURE TRAP3 IS

PACKAGE REAL 10 IS NEW FLOAT IO(FLOAT);
PACKAGE INT _O IS NEW INTEGERIO(INTEGER);
USE REALIO;
USE INT_10;

SUM : FLOAT := 0.0;
UPPER FLOAT : 9.0;
LOWER : FLOAT : 1.0;
TOL : FLOAT := I.OE-5;

-- f(X) = 1 / X, be careful of X = 0.

FUNCTION F (X : IN FLOAT) RETURN FLOAT IS
F : FLOAT;

BEGIN
F := 1.0 / X;
RETURN F;

END F;

FUNCTION DF (X : IN FLOAT) RETURN FLOAT IS

DF : FLOAT;

3EGIN

DF : -1.0 /(X*X);
RETURN DF;

END DF;

PROCEDURE TRAPEZ (LOWER,UPPER,TOL,SUM : IN OUT FLOAT) IS

-- Numerical integration by the trapezoidal method.

PIECES, P2 INTEGER;

76

"- -' * .'- b ' • d . It-................................... " ' "." " ' """"

X, DEL : FLOAT;
ENDD, ENDSUM, MIDSUM, SUMi, ENDCOR FLOAT;

BEGIN
PIECES :=1;
DEL := (UPPER - LOWER) / FLOAT(PIECES);
ENDSUM F(LOWJER) + F(UPPER);
ENOCOR (DF(UPPER) -DF(LOWER)) / 12.0;
SUM iNDSUM * DEL /2.0;
PUT ("1 ") ; PUT (SUM) ;
NEWLINE;
MIDSUM := 0.0;
((RETRN >
PIECES := PIECES * 2;
P2 := PIECES /2;
SUM SUM;
DEL :(UPPER -LOWER) / FLOAT(PIECES);
FOR I IN 1 .. P2 LOOP
X := LOWER + DEL * FLOAT(2 * I - 1);
MIDSUM := MIDSUM + F(X);

END LOOP;
SUM (ENDSUM +9 2.0*MIDSUM) * DEL * 0.5 -DEL *DEL*

ENDCOR;
PUT (""); PUT (PIECES); PUT ("";PUT (SUM);
NEW LINE;
IF (ABs(SUM-SUMl) > ABS(TOL*SUM)) THEN
GOTO RETRN;

END IF;
END TRAPEZ;

BEGIN
PUT(" Trapezoidal integration with end correction");
NEWLINE;
NEWLINE;
TRAPEZ (LOWER,UPPER,TOL,SUM);
NEW LINE;
PUT(Q Area);PUT (SUM);
NEWLINE;

END TRAP3;

77

APPENDIX D

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ADA LINE-BY-LINE TRANSLATION USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V04.06

-- LINE BY LINE TRANSLATION OF THE PROGRAM rRAP3.
-- TRAPEZOIDAL METHOD OF INTEGRATION, USING SIX
-- DIGIT PRECISION.

WITH TEXT_IO; USE TExTIO;

PROCEDURE TRAP3 IS

type six is digits 6;

PACKAGE REAL 10 IS NEW FLOAT IO(six);
PACKAGE INT _O IS NEW INTEGER IO(INTEGER);
USE REAL IO;
USE INTTo;

SUM : six := 0.0;
UPPER : six 9.0;
LOWER : six 1.0;
TOL : six := l.OE-5;

-- f(X) = 1 / X, be careful of X = 0.

FUNCTION F (X : IN six) RETURN six IS
F : six;

BEGIN
F := 1.0 / X;
RETURN F;

END F;

FUNCTION DF (X : IN six) RETURN six IS
DF six;

BEGIN
DF -1.0 /(X*X);

RETURN DF;
END DF;

PROCEDURE TRAPEZ (LOWER,UPPER,rOL,SUM : IN OUT six) IS

-- Numerical integration by the trapezoidal method.

PIECES, P2 INTEGER;

78

X, DEL :six;
ENDD, ENDSUM, MIDSUM, SUMi, ENDCOR :six;

BEGI N
PIECES := 1;
DEL := (UPPER - LOWER) / six(PIECES);
ENDSUM :F(LOWER) + F(UPPER);
ENDCOR :(DF(UPPER) -DF(LOWER)) / 12.0;
SUM :ENOSUM * DEL /2.0;
PUT ("1 "); PUT (SUM);
NEWLINE;
MIDSUM := 0.0;
«<RETRN >
PIECES := PIECES * 2;
P2 := PIECES /2;
SUMi SUM;
DEL :=(UPPER -LOWER) / six(PIECES);
FOR I IN 1 .. P2 LOOP
X :=LOWER + DEL * six(2 * I - 1);
MIDSUM := tIDSUM + F(X);

END LOOP;
SUM :(ENDSUM + 2.0*MIDSUM) *DEL * 0.5 -DEL *DEL*

ENDCOR;
PUT ("";PUT (PIECES); PUT ("";PUT (SUM);
NEW LINE;
IF (ABS(SUM-sUM1) > ABS(TOL*SUM)) THEN
GOTO RETRN;

END IF;
END TRAPEZ;

BEGIN
PUT(" Trapezoidal integration with end correction");

NEWLINE;
NEW LINE;
TRAPEZ (LOWER,UPPER,TOL,SUM);
NEW LINE;
PUT-(" Area ");PUT (SUM);
NEW LINE;

END TRAP3;

79

APPENDIX E

SOURCE LISTING

TRAPEZOIDAL INTEGRATION MAIN PROGRAM

ADA REDESIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.06

with NUMERIC INTEGRATION; use NUMERIC INTEGRATION;

with TEXT_IO use TEXTI0;

procedure MAIN is

package INT 10 is new INTEGER 10 (INTEGER);

package REAL_10 is new FLOAT_I (FLOAT);
use INTIO;

use REALIO;

UPPER BOUND : FLOAT : 9.0;

LO4ER-BOUND : FLOAT : 1.0;
TOLERANCE : FLOAT : 1.0e-5;
AREA : FLOAT;

begin
NEWLINE;
PUT (-TRAPEZOIDAL INTEGRATION");
NEW LINE;
AREA : (F(UPPER BOUND)

+ F (LOWER BOUND))
* (UPPERBOUND- LOWERBOUND)
/ 2.0;

PUT (1);
PUT (AREA);
TRAPEZOIDALINTEGRATION (UPPERBOUND,

LOWER BOUND,
TOLERANCE,
AREA);

NEW LINE;
PUT-("AREA
PUT (AREA);
NEW LINE;

end MAIN;

80

-' w..-...-,-.I'4 -. Cha u. b ma i i i

APPENDIX F

SOURCE LISTING
TRAPEZOIDAL INTEGRATION ROUTINES PACKAGE

ADA REDESIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.06

with TEXTIO; use TEXTIO;

package NUMERICINTEGRATION is

package INT 10 is new INTEGER 10 (INTEGER);
package REAL_10 is new FLOATI0 (FLOAT);
use INT 10;
use REALIO;

procedure TRAPEZOIDALINTEGRATION
(UPPERBOUND : in FLOAT;
LOWER BOUND : in FLOAT;
TOLERANCE : in FLOAT;
AREA : in out FLOAT);

function F (X : in FLOAT) return FLOAT;
function DF (X in FLOAT) return FLOAT;

end NUMERICINTEGRATION;

---- --

package body NUMERICINTEGRATION is

procedure TRAPEZOIDALINTEGRATION
UPPER BOUND : in FLOAT;

LOWERBC,'ND : in FLOAT;
TOLERANCE : in FLOAT;
AREA : in out FLOAT) is

NUMBER OF PARTITIONS : INTEGER 1;
PREV NUMBER OF PARTITIONS : INTEGER;

PREVIOUS AREA : FLOAT 0.0;
MID SUM : FLOAT : 0.0;
END SUM : FLOAT;
END CORRECTION : FLOAT;
PARTITIONBASELENGTH : FLOAT;
X : FLOAT;

begin

ENDCORRECTION := (DF(UPPERBOUND)
- DF(LOWERBOUND))

81

/ 12.0;

ENDSUM F(UPPERBOUND)
+ F (LOWERBOUND);

while ABS (AREA- PREVIOUSAREA) > ABS(TOLERANCE *
AREA) loop

PREVIOUS AREA AREA;
PREV NUMBER OF PARTITIONS := NUMBER OF PARTITIONS;

NUMBEROFPARTITIONS NUMBEROFPARTITIONS
*2;

PARTITIONBASELENGTH (UPPER BOUND
- LOWER BOUND)
/ FLOAT
(NUMBEROFPARTITIONS);

for ITERATION in l..PREV NUMBEROFPARTITIONS loop
S:-LOWER BOUND

+ PARTITION BASE LENGTH
* FLOAT(2 * IrERATION - 1);

MID SUM MIDSUM + F(X);
end loop;

AREA := (END SUM + 2.0 * MID_SUM)
* PARTITIONBASE LENGTH * 0.5

PARTITION BASE LENGTH
• PARTITION BASE LENGTH
• ENDCORRECTION;

NEW LINE;
PUT (NUMBER OF PARTITIONS);
PUT (AREA);

end loop;
end TRAPEZOIDALINTEGRATION;

function F (X : in FLOAT) return FLOAT is
FUNCTIONALVALUE FLOAT;

begin
FUNCTIONAL VALUE 1.0 / X;
return FUNCTIONALVALUE;

end F;

function DF (X : in FLOAT) return FLOAT is
FUNCTIONALVALUE FLOAT;

begin
FUNCTIONAL VALUE -1.0 / (X *X);
return FUNCTIONAL_VALUE;

end DF;

end NUMERICINTEGRATION;

82

• . -,, '-" ' '- -'--- ,m,, ..•..-..•........

APPENDIX G

SOURCE LISTING
TRAPEZOIDAL INTEGRATION MAIN PROGRAM

ADA REDESIGN USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V04.06

with NUMERIC INTEGRATION; use NUMERIC INTEGRATION;
with TEXTI0; use TEXTIO;
procedure MAIN is

package INT 10 is new INTEGER 10 (INTEGER);
package REAL_10 is new FLOATI0 (DIGITS_6);
use INTIO;
use REALIO;

UPPER BOUND : DIGITS 6 : 9.0;

LOWER-BOUND : DIGITS-6 1.0;
TOLERANCE : DIGITS 6 : 1.0e-5;
AREA : DIGITS-6;

begin
NEW-LINE;
PUT ("TRAPEZOIDAL INTEGRATION");
NEWLINE;
AREA (F(UPPER BOUND)

+ F(LOWER BOUND))
* (UPPER_BOUND - LOWERBOUND)

/ 2.0;
PUT (1);
PUT (AREA);
TRAPEZOIDALINTEGRATION (UPPERBOUND,

LOWER BOUND,
TOLERANCE,
AREA);

NEWLINE;
PUT ("AREA =

PUT (AREA);
NEW LINE;

end MAIN;

83

A0-0161 715 AM ASSESSMENT OF AM'S SUITABILTY IN GENERAL PUIPOSE 2/3
PROGRAMMING APPLICRTIONS(U) AIR FORCE INST OF TECH
URIGHT-PTTERSON RFO OH SCHOOL OF SYST..

UNCLASSIFIED L 0 CRVITT ET AL. SEP 9 F/S 9/2mhhhhAhahhhhI

IIIIIIIIIIIIIE
IIIIIIIEIIEII
IIIIIIIIIIIIII

IIIIIIIIIIIIIIl
IIIIIIIIIIIIII

11.6

1.8.

11111.2 .6III

MICOCPY ESION TET36 RTI

NAOALB EA O TADADS*4 960

11111 i

IiOp.

APPENDIX H

SOURCE LISTING
TRAPEZOIDAL INTEGRATION ROUTINES PACKAGE
ADA REDESIGN USING SIX DIGIT PRECISION

VADS COMPILER RELEASE V04.06

with TEXT_10; use TEXT_IO;

package NUMERIC INTEGRATION is

type DIGITS_6 is digits 6;

package INT 10 is new INTEGER 10 (INTEGER);
package REAL_10 is new FLOAT_10 (DIGITS_6);
use INT 10;
use REALIO;

procedure TRAPEZOIDALINTEGRATION
(UPPER BOUND : in DIGITS_6;
LOWER BOUND : in DIGITS_6;
TOLERANCE : in DIGITS_6;
AREA : in out DIGITS_6);

function F (X : in DIGITS 6) return DIGITS_6;
function DF (X : in DIGITS_6) return DIGITS_6;

end NUMERIC INTEGRATION;

package body NUMERICINTEGRATION is

procedure TRAPEZOIDALINTEGRATION
(UPPER BOUND : in DIGITS 6;
LOWER BOUND : in DIGITS 6;
TOLERANCE : in DIGITS 6;
AREA : in out DIGITS 6) is

NUMBER OF PARTITIONS : INTEGER : 1;
PREV NUMBER OF PARTITIONS : INTEGER;

PREVIOUS AREA : DIGITS 6 : 0.0;
MID SUM . DIGITS_6 0.0;
END SUM : DIGITS_6;
ENDCORRECTION : DIGITS_6;
PARTITIONBASELENGTH : DIGITS_6;
X : DIGITS_6;

begin

ENDCORRECTION (DF(UPPERBOUND)

84

- DF(LOWER kOUND))
/ 12.0;

END SUM : F(UPPER BOUND)
+ F(LOWERBOUND);

while ABS (AREA -PREVIOUSAREA) > ABS(TOLERANCE
AREA) loop

PREVIOUS AREA : AREA;
PREV NUMBER OF PARTITIONS := NUMBER OF PARTITIONS;
NUMBER OF PARTITIONS := NUMBEROF PARTITIONS

* 2;
PARTITIONBASELENGTH (UPPERBOUND

- LOWER BOUND)
/ DIGITS 6
(NUMBER OF PARTITIONS);

for ITERATION in I..PREV NUMBEROFPARTITIONS loop
X : LOWER BOUND

+ PARTITION BASE LENGTH
* DIGITS 6(2 * ITERATION - 1);

MIDSUM : MID SUM + F(X);
end loop;

AREA : (END SUM + 2.0 * MID SUM)
* PARTITION BASE LENGTH *0.5
- PARTITION-BASE LENGTH
* PARTITION BASELENGTH
* ENDCORRECTION;

NEW LINE;
PUT (NUMBEROFPARTITIONS);
PUT (AREA);

end loop;
end TRAPEZOIDAL INTEGRATION;

--

function F (X : in DIGITS 6) return DIGITS_6 is
FUNCTIONALVALUE : DIGITS_6;

begin
FUNCTIONAL VALUE 1.0 / X;
return FUNCTIONALVALUE;

end F;
--
--

function DF (X : in DIGITS 6) return DIGITS 6 is
FUNCTIONALVALUE : DIGITS_6;

begin
FUNCTIONAL VALUE : -1.0 / (X *X);
return FUNCTIONALVALUE;

end DF;

er.d NUMERICINTEGRATION;

85

APPENDIX I

SOURCE LISTING
TRUCK SIMULATION PROGRAM

FORTRAN 4 VERSION WITH 3:503 ELEMENT ARRAY

C TRUCK PROBLEM-VARIANT OF PP 77-82 IN BANKS AND CARSON.
PROGRAM TRUCK
REAL AIAT, MSVT

INTEGER NR
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKOUT(100) ,B,MQ,S,F,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
II=l
OSEED=567.0

1 NUMEVS=2
MIAT= 1.0/3.0

MSVT-.25
NCUST1 500

C WE WILL USE GGUBS TO GENERATE A STRING OF RANDOM 4'S
C ROUrIE GGJBS

NR=3500
CALL GGUBS(NR)

C IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR=1

C CALL INITIALIZATION ROUTINE
CALL INITLZ

C
C
C CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
C AAD ADVANCE
C CLOCK TO THE IMMINENT EVENT TIME.

30 CALL TIMADV
C
C VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.

C IAEVT=1 FOR AN NRRIVAL.
C IMEVT=2 FOR A DEPARTURE.

GO TO(40,50) ,I4EVT
40 CALL ARRVL

GO TO 30
C CALL DEPARTURE ROUTINE

50 CALL DPART
C
C CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO
C # 30

8 IF(ND.LT.NCUST) GO TO 30
IF(II.EQ.1) DSEED-567.0
IF(II.EQ.2) DSEED=459 .0

86

•-..

IF(II.EQ.3) DSEED=561.0
IF(II.EQ.4) DSEED=663.0
IF(II.EQ.5) DSEED=613.0
IF(II.EQ.6) DSEED=867.0
IF(II.EQ.7) DSEED=969.0
IF(II.EQ.8) DSEED=1071.0
IF(II.EQ.9) DSEED=1173.0
IF(II.EQ.10) DSEED=2717.0
CALL RPTGEN

C WHEN SIMULATION OVER GENERATE REPORTS.
II=11+1
IF(II.EQ.2) DSEED=459.0
IF(II.EQ.3) DSEED=561.0
IF(II.EQ.4) DSEED=663.0
IF(II.EQ.5) DSEED=613.0
IF(II.EQ.6) DSEED=867.0
IF(II.EQ.7) DSEED=969.0
IF(II.EQ.8) DSEED=1071.0
IF(II.EQ.9) DSEED=1173.0
IF(II.EQ.10) DSEED=2717.0

53 IF(II.LE.10) GO TO 1
S TOP
END

C INITIALIZATION ROUTINE
SUBROUTINE INITLZ
REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHiKOUT(100) ,B,r4Q,S,F',ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS ,FEL(2) ,XXT

C
C SET SIMULATION CLOCK TO ZERO.
C ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
C INITIALIZE CUMULATIVE STATISTICS TO 0.

CLOCK=0 .0
I MEVT=0
LQT=O
LST=O
TLE=0
B= 0
MQ =
S=O
F= 0
ND=0

C GENERATE TIME OF FIRST ARRIVAL,IAT, AND SCHEDULE FIRST
C ARRIVAL
C IN FEL(1)K.SET FEL(2) TO "INFINITY" TO INDICATE THAT A
C DEPARTURE
C IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY.

RR=R(IIR)
X= -log(RR)
X=X*h4IAT
XXT-1.0

87

FEL(1)=CLOCK + X
FEL(2) = 1.0E+30
IIR=IIR+I
RET URN
END

C
C
C TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON FJTURE EVENT

C LIST AND ADVANCES THE CLOCK.
SUBROUTINE TIMADV
REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LSr,TLE,

ICHKOUT(100) ,B,MQ,S,F,ND,IIR,R(350) ,OSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
FMIN= .E+29
IMEVT=0

C SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

DO 30 I=1,NUMEVS
IF(FEL(I).GE.FMIN) GO TO 30
FMIN=FEL(I)
IMEVT=I

30 CONTINUE
IF(IMEVT.GT.0) GO TO 50

C ERROR CONDITION: FUTURE EVENT LIST EMPTY.
WRITE(06,40)

40 FORMAT(IX,51HFUTURE EVENT LIST EMPTY-SIMULATION CANNOT
ICONTINUE.)
CALL RPTGEN
STOP

C ADVANCE SUMULATION CLOCK.
C NEXT EVENT IS TYPE "IMEVT",WHICH WILL OCCUR AT TIME

iFEL (IMEVT)
C

50 CLOCK=FEL(IMEVT)
RETURN
END

C ARRIVAL EVENT ROUTINE
SUBROUTINE ARRVL
REAL MIAT,MSVT,IAT

COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKOUT(100) ,B,MQ,LS,F,ND,IIR,R(3500) ,DSEED

COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,xxr
C
C DETERMINE IF SERVER IS BUSY(IS TRUCK BEING CURRENTLY

C UNLOADED?)
IF(LST.EQ.1) GO TO 20

C
C SERVER IS IDLE. UPDAATE SYSTEM STATE AND RECORD
C ARRIVAL TIME OF
C NEW CUSTOMER.

LST=l
CHKOUT (1) =CLOCK

C GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND

88

-'--. .- '' Z.., , ., . .'. ' i ,, - - % ' I •% . . , , " * *. . .. - .,* '*.. ,

C SCHEDULE THE

C DEPARTURE FOR THIS ARRIVAL.
RR=R(IIR)

X-LOG (RR)
X=X*MSVT
FEL (2) =CLOCK+X
TLE=CLOCK
IIR=IIR+1
IF(LQT.GT.MQ) MQ=LQT
GO TO 100

C
C SERVER IS BUSY. UP DATE SYSTEM STATE AND RECORD
C ARRIVAL TIME
C OF NEW CUSTOMER.
C

20 LQT=LQT+1
I=LQT +LST
IF(I.GT.100) GO TO 200
CHKOUT(I)=CLOCK

C
C UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S,ND AND
C F ARE NOT
C UPDATED WHEN AN ARRIVAL OCCURS.

B=B+ (CLOCK-TLE)
TLE=CLOCK
IF(LQT.GT.MQ) MQ=LQT

C
C GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
C ARRI'VAL
C EVENT

100 RR=R(IIR)
X=-LOG (RR)
IAT=X*MIAT
XXT=XXT+1. 0
FEL(1)=CLOCK +IAT
IIR=IIR+1
RETURN

C
C ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS
C OVERFLOWED.
C INCREASE DIMENSION OF VARIABLE CHKOUT(I).

200 WRITE(06,205)
205 FORMAT(IX,45HOVERFLOW IN ARRAY CHKOUT. INCREASE

1DIMENSION.,//X,27HSIMULATION CANNON CONTINUE.)
CALL RPTGEN
STOP
EAD

C
C DEPARTURE EVENT ROUTINE.

SUBROUTINE DPART
REAL MIAT,MSVT
COMMON/SIM/ MIAT,MS7T,NCUST,LQT,LST,TLE,

89

1CHKOUT(100) ,B,MQ,S ,F,ND,IIR,R(3500) ,DSEED
COMMON/TIAEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C
UPDATE 'CUMULATIVE STATISTICS:B,S,ND,F. NOTE:LQT IS

C D ECREASIN G
C 3O MQ DOES NOT CHANGE NOW.

B=8+ (CLOCK-TLE)
rLE=C LOCK
RT=CLOCK-CHiKOUT (1)
S = S+RT
ND=ND+l
IF(RT.GT.4.0) F=F+1

CHECK CONDITION OF WAITING LINE.
IF(LQT.GE.1) GO TO 20

C
C NO CLJSTOMES IN LINE. SERVER BECOMES IDLE. NEXT
C DEPARTURE rIME
C SET TO "INFINITY".

LST=O
FEL(2)=1 .E+30
RET URN

C AT LEAST ONE CUSTOMES IN LINE, SO MOVE EACH CUSTOMER
C IN LINE

C FORWARD ONE SPACE.
20 DO 30 I=1,L'2T

I1=I+1
CHKOUT (I)=CHKOUT (Ii)

30 CONTINUE
C UPDATE SYSTEM STATE

L~r=LQ)T-1
c GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
C SERVICE,
C AAD SCHEDULE NEXT DEPARTURE EVENT.

RR=R(IIR)
X=-LOG (RR)
s vr=x * MS V
FEL(2)=CLOCK +SVT

RET URN
END

C REPORT GENERATOR
SUBROUTINE APTGEN
REAL MIAT,MSVT
COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

1CHKOUT(100) ,B,MQ,S,F ,ND,IIR,R(3500) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C C01PUTE SUMMARY STATISTICS
RHO=B/CLOCK
AVGR S/ND
PC4=F/ND
XX1=S/CLOCK

90

.77-

XX2=XXT/CLOCK
WRITE (06, 10)

10 FORMAT(5X,63HTRJCK QUEUING PROBLEM:ANDERSON AND
1SWEENEY-SINGLE SERVER QUEUE.,///)
WJRITE(06,l5) DSEED,MIAT,MSVT

15 FORMATWCX,7HDSEED =,4X,D20.8/lX,25HMEAN ARRIVAL
lrIME(MIAT) =,4X,F1O.4/lX,25HMEAN SERVICE TIME(MSVT)

WRITE(06 ,30) RHO,MQ,AVGR,PC4 ,CLOCK,ND,IIR,XX1 ,S,XX2
30 FORMAT(1X,38dPROPORTION OF TIME DOCK CREWJ IS BUSY
1=,F8.2,//lX,32HMAXIMUM LENGTH OF WAITING LINE
2=,I8,//1X,28HAVERAGE TIME TO TRANSIT SYS. ,Fa.2,10H
3HOURS..//lX,62iIPROPORTION OF TrRUCKS TAKING FOUR OR
4MORE HOURS.. IN THE SYSTEM,F6.2//1X,21HSIMULATION RUN
5LENGTHI,FB.2,10H HOURS. .//1X,27RNtJMBER OF TRUCKS
6UNLOADED =,18//1X,31HNUMBER OF RANDOM NUMBERS USED
7=,Il0,//lX,32HAVERAGE NUMBER OF UNITS IN
8SYS.=,3X,F8.3//1X,45HTOTAL NUMBER OF TRUCK HOURS IN
9THE SYSTEM(S)=
9,F11.3,4X,15H(TRUCKS PER HR)//lX,34HAVERAGE NUMBER OF
9ARRIVALS PER HR=,4X,F10.4////)
RETURN
END

C RANDOM NUMBER GENERATOR
SUBROUT.INE GGUJBS (NR)
COM4MON /SIM/ MIA-T,MSVT,NCUST,LQT,LSTr,TLE,

lCHKOU-r(l00) ,B,4Q ,S,F,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
REAL tmpreal, temp
INTEGER trnpint
DO 40 I=1,N4R

tmpreal=DSEED*3 .141592
tinpint= int (timpreal)
te~up=t.nprea1-rea (tmpint)
if (temrp .GE. 0.5) then

timPint =tipint + 1
tinpreal =timpreal - real(tmpint)

else
tmpreal =temp

endif
if (tipreal .LT. 0.0) then

tmpreal=-tmpreal
end if
tmpreal = 2.0k10*tmpreal
R (I) =t.Dnpreal
DS E ED= tmp real

40 CONTINUE
RETURN
END

91

APPENDIX J

SOURCE LISTING
TRUCK SIMULATION PROGRAM

FORTRAN 4 VERSION USING 650 ELEMENT ARRAY

C TRUCK PROBLEM-VARIANT OF PP 77-82 IN BANKS AND CARSON.
PROGRAM TRUCK
REAL MIAT,MSVT
INTEGER NR
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

1CHKOUT(10) ,B,MQ,S,F,ND,IIR,R(6500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
II=i
DSEED=567.0

1 NUMEVS-2
MIAT= 1.0/3.0
MSVT=.25
NCUST=3000

C WE WILL OSE GGUBS TO GENERATE A STRING OF RANDOM #'S
C ROUTINE GGUBS

NR=3500
CALL GGUBS(NR)

C IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR=1

C CALL INITIALIZATION ROUTINE
CALL INITLZ

C
C
C CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT

C AND ADVANCE
C CLOCK TO THE IMMINENT EVENT TIME.

30 CALL TIMADV
C
C VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.

C IMEVT=1 FOR AN ARRIVAL.
C IMEVT=2 FOR A DEPARTURE.

GO TO(40,50) ,IMEVT
40 CALL ARRVL

GO TO 30
C CALL DEPARTURE ROUTINE

50 CALL DPART
c
C CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO
C # 30

8 IF(ND.LT.NCUST) GO TO 30
IF(II.EQ.1) DSEED=567.0
IF(II.EQ.2) DSEED=459.0

92

IF(II.EQ.3) DSEED=561.0
IF(II.EQ.4) DSEED=663.0
IF(II.EQ.5) DSEED=613.0
IF(II.EQ.6) DSEED=367.0
IF(II.EQ.7) DSEED=969.0
IF(II.EQ.8) DSEED=107I.0
IF (II.EQ.9) DSEED=1173 .0
IF (II .EQ.10) DSEED=2717 .0
'CALL RPTGEN

C WHEN SIMULATION OVER GENERATE REPORTS.
II=II+1
IF(.II.EQ.2) DSEED=459.0
IF(II .EQ.3) DSEED=56I.0
IF(II.EQ.4) DSEED=663.0
IF(II.EQ.5) DSEED=613.0
IF(II.EQ.6) DSEED=867.0
IF(II.EQ.7) DSEED=969.0
IF(II.EQ.8) DSEED=1071.0
IF(II.EQ.9) DSEED=1173.0
IF(II.EQ.10) DSEED=2717.0

53 IF(II.LE.10) GO TO 1
STOP
END

C INITIALIZATION ROUTINE
SUBROUTINE INITLZ
REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCtJST,LQT,LST,TLE,

1CHKOUT(100) ,B,MQ ,S,F,,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IM4EVT,NUMEVS ,FEL(2) ,XXT

C
C SET SIMULATION CLOCK TO ZERO.
C ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
C INITIALIZE CUMULATIVE STATISTICS TO0 0.

CLOCK=0.0
I MEVT= 0
LQT =
LST=O
TLE=0
B=O
MQ~o
S=O

ND=0
C GENERATE TIME OF FIRST ARRIVAL,IAT, AND SCHEDULE FIRST
C ARRIVAL
C IN FEL(1)K.SET FEL(2) TO "INFINITY" TO INDICATE THAT A

C DEPARTURE
C is NOTr POSSIBLE WHILE THE SYSTEM IS EMPTY.

RR=R (I IR)
X= -log(RR)
X=X*MIAT
XKT=1.0

93

FEL(1)=CLOCK + X
FEL(2)= 1.0E+30
IIR=IIR+I
RET URN
END

C
C
C TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON FUTURE EVENT

C LIST AND ADVANCES TaE CLOCK.
SUBROUTINE TIMADV
REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

ICdKOUT(100) ,B,MQ,S,F,ND,IIR,R(3500) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

FMIN= .E+29
IMEVT=0

C SEARCd FUTURE EVENT LIST FOR NEXT EVENT.

DO 30 I=i,NUMEVS
IF(FEL(I).GE.FMIN) GO ro 30

FMIN=FEL (1)
IMEVT= I

30 CONTINUE
IF(IMEVT.GT.0) GO TO 50

C ERROR CONDITION: FUTURE EVENT LIST EMPTY.
WRITE (06 ,40)

40 FORMAT(1X,51HFUTURE EVENT LIST EMPTY-SIMULATION CANNOT

ICONhTINUE.)
CALL RPTGEN
STOP

C ADVANCE SUMULATION CLOCK.

C NEXT EVENT IS TYPE "LMEVT",WHICH WILL OCCUR AT TIME
iFEL (IMEVT)

50 CLOCK=FEL(IMEVT)
RET U RN
END

C ARRIVAL EVENT ROUTINE

SUBROUTINE ARRVL
REAL AIAT,MSVT,IAT

CCOMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
lCHKOUT(100) ,B,MQ,LS,F,ND,IIR,R(3500) ,DSEED

COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
C
C DETERMINE IF SERVER IS BUSY(IS TRUCK BEING CURRENTLY

C UNLOADED?)
IF(LST.EQ.1) GO TO 20]

C
C SERVER IS IDLE. UPDAATE SYSTEM STATE AND RECORD
C ARRIVAL TIME OF
C NEW CUSTOMER.

LST= 1
CHKOUT (1) =CLOCK
GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND

94

C SCHEDULE THE
C DEPARTURE FOR THIS ARRIVAL.

RR=R(IIR)
X=-LOG (RR)
X=X*MSVT
FEL (2) =CLOCK+X
2LE=CLOCK
IIR=IIR+I
I?(LQT.GT.MQ) AQ=LQT
GO TO 100

C
C SERVER IS BUSY. UP DATE SYSTEM STATE AND RECORD
C ARRIVAL TIME
C OF NEW CUSTOMER.
C

20 LQT=LQT+I
I=LQr +LST
IF(I.GT.10) GO TO 200
CHKOUr (I) =CLOCK

C
C UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S,ND AND
C F ARE NOT
c UPDATED WHEN AN ARRIVAL OCCURS.

B=B+ (CLOCK-TLE)
TLE=CLOCK
IF(LQT.GT.MQ) MQ=LQT

C
C GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
C ARRIVAL
C EVENT

100 RR=R(IIR)

X=-LOG (RR)
IAT=X*MIAT
XXT=XXT+1 .0

FEL(l)=CLOCK +IAT
IIR=IIR+I
RETURN

C
C ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS

C OVERFLOWED.
C INCREASE DIMENSION OF VARIABLE CHKOUT(I).

2 WRITE(06,205)
205 FORMAT(IX,45HOVERFLOW IN ARRAY CHKOUT. INCREASE

IDIMENSION.,//1X,27HSIMULATION CANNON CONTINUE.)
CALL RPTGEN
STOP
END

c
C DEPARTURE EVENT ROUTINE.

SUBROUTINE DPART
REAL MIAT,MSVT
COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

95

.

ICHKOUT(100) ,B,MQ,S,F,ND,IIR,R(3500) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C
C UJPDATE CUMUJLATIVE STATISTICS:B,S,ND,F. NOTE:LQT IS
C DECREASING
C SO MQ DOES NOT CHANGE NOW1.

B=B+ (CLOCK-T2LE)
TLE= CLOCK
RT=CLOCK-CHKOUT (1)
S=S+RT
ND=ND-1
IF(R'r!.GT.4.0) F=F+1

C
C CHECK CONDITION OF 4AITING LINE.

IF(LQT.G-E.1) GO TO 20
C
C NO CUSTOMES IN LINE. SERVER BECOMES IDLE. NEXT
C DEPARTURE TIME
C SET TO "INFINITY".

LST=O
FEL(2)=1 .E-i30

* RETURN
C AT LEAST ONE CUSTOMES IN LINE, SO MOVE EACH CUSTOMER
C IEN LINE
C FORW~ARD ONE SPACE.

20 DO 30 I=1,LQT
I1=I+1
CHKOUT(I)=CHKOUT(Il)

30 CONTINUE
C UPDATE SYSTEM STATE

LQT=LQ- 1
C GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
C SERVICE,
C AND SCHEDULE NEXT DEPARTURE EVENT.

RR= R(I IR)
X=-LOG (RR)
S VTX *MS VT
FEL(2)=CLOCK +SVr
IIR=IIR+l
RET URN
END

C REPORT GENERATOR
SUBROUTINE RPTGEN
REAL MIAT,MSVT
COMMON/SIM/ MIAT,MSVT,NCUS'T,LQT,LST,TLE,

1CHKOUT(100) ,B,MQ,S,F ,ND,IIR,R(3500) ,DSEED
COMMON/TIMiEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C COMPUTE SUMMARY STATISTICS
RHO=B/C LOCK
AV'GR=S/ND
PC 4=F/'ND
XX1=S/CLOCK

96

XX2=XXT/CLOCK
WRITE (06 ,30)

10 FORMAT(5X,63HTRUCK QUEUING PROBLEM:ANDERSON AND
1SWEENEY-SINGLE SERVER QUEUE.,//!)
WRITE(k16,15) DSEED,MIAT,MSVT

15 FORMAT(1X,7HDSEED =,4X,D20.8/1X,25HMEAN ARRIVAL
1TIME(MIAT) =,4X,F10.4/1X,25HMEAN SERVICE TIME(MSVT)
2=,4X,F1O.4//)
WRITE (06 ,30) RHO,MQ,AVGR,PC4 ,CLOCK,ND,IIR,XX1 ,S,XX2

30 FORMAT(1X1.3qHPROPORT1ON OF TIME DOCK CREW IS BUSY
1=,F8.2,//1X,32HMAXIMUM LENGTH OF WAITING LINE
2=,I8,//1X,28HAVERAGE TIME TO TRANSIT SYS.,F8.2,10H
3HOURS..//lX,62HpROPORTION OF TRUCKS TAKING FOUR OR
4MO0RE HOURS.. IN THE SYSTEM,F6.2//1X,21HSIMULATION RUN
5LENGTH,F8 .2 ,10H HOURS. .//1X,27HNUMBER OF TRUCKS
6UNLOADED =,I8//1X,31HNUMBER OF RANDOM NUMBERS USED
7=,i10,//lX,32HAVERAGE NUMBER OF UNITS IN
8SYS.=,3X,F8.3//1X,45HTOTAL NUMBER OF TRUCK HOURS IN
9THE SYSTEM(S)=
9,Fl1.3,4X,15H(TRUCKS PER HR)//lX,34HAVERAGE NUMBER OF
9ARRIV1ALS PER HR=,4X,F10.4////)
RETURN
END

CRANDOM NUMBER GENERATOR
SUBROUTINE GGUBS (NR)
COMMON /SIM/ MIATIMSVT,NCUST,LQT,LST,TLE,
1CHKOUr(100) ,B,MQ,S,F ,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
REAL tmpreal, temp

* INTEGER tmpint
DO 40 I=1,NR

tmpreal=DSEED*3 .141592
tmpint= in t (tmpreal)
teinp=tmpreal-real (tmpint)
if (temp .GE. 0.5) then
tmpint =tmpint + 1
tmpreal =tmpreal - real(tmpint)

else
tmpreal =temp

endif
if (txnpreal .LT. 0.0) then

tmpreal=- tmpreal
endi f
tmpreal = 2.000*tmpreal
R(I) =tmpreal
DSEED=tmpreal

40 CONTINUE
RETURN
END

97

APPENDIX K

SOURCE LISTING
TRUCK SIMULATION PROGRAM

ADA LINE-BY-LINE TRANSLATION WITH 3500 ELEMENT ARRAY
TELESOFT-ADA COMPILER VERSION 1.5

-- THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION
-- PROGRAM WRITTEN IN FORTRAN. TITLE OF THE PROGRAM IS
-- TRUCK. THIS PROGRAM IS A LINE BY LINE TRANSLATION OF THE
-- FORTRAN PROGRAM INTO ADA.

with textio; use textio;
use floatio; use integerio;
with log; use log;

procedure TRUCK is

NR : integer;
DSEED : float := 567.0;
type RN is array(integer range 1 .. 3500) of float;

. type FUTURE EVENT is array (1 .. 2) of float;
type ARRIVE is array (1 .. 100) of float;
MIAT : float 1.0/3.0;
MSVT : float 0.25;
CLOCK,TLE,B,S float;
NUMEVS : integer :=2;
II : integer := 1;
LQT,LST,MQ,F : integer;
ND,IIR,IMEVT : integer;
XXT : float;
CHKOUT : ARRIVE;
R : RN;
FEL : FUTUREEVENT;
NCUST : integer := 1500;

procedure RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED : in out
float;

ND,F,IIR,MQ in out integer) is
--COMPUTE SUMMARY STATISTICS.

RHO, AVGR: float;
XXI, XX2: float;

98

PC4: float;

begin

RHO : B/CLOCK;
AVGR S/float(ND);
PC4 := float(F)/float(ND);
XXl : S/CLOCK;
XX2 : XXT/CLOCK;
put(" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-

SINGLE SERVER QUEUE");
new line; new line; new line ;
put(" DSEED= ") ; put(DSEED) ; new line;
put(" MEAN ARRIVAL TIME(MIAT) = -); put(MIAT);
new line;
put(" MEAN SERVICE TIME(MSVT) = "); put(MSVT);
new-line;
new line;
put(" PROPORTION OF TIME DOCK CREW IS BUSY =");
put (RHO);
new line; new line;
put(" MAXIMUM LENGTH OF WAITING LINE ="); put(MQ);
new line; new line;
putT" AVERAGE-TIME TO TRANSIT SYS."); put(AVGR);
put("HOURS.");
new line; new line;
put(" PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS..

IN THE SYSTEM"); put(PC4);
new line; new line;
put(" SIMULATION RUN LENGTH"); put(CLOCK);
put ("HOURS.") ;
new line; new line;
putT" NUMBER OF TRUCKS UNLOADED ="); put(ND);
new line; new line;
put(" NUMBER OF RANDOM NUMBERS USED ="); put(IIR);
new line; new line;
put(" AVERAGE NUMBER OF UNITS IN SYS.= "); put(XXl);
new line; new line;
put(" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= ");
put(S);
put(" (TRUCKS PER HR)");
new line; new line;
put(" AVERAGE NUMBER OF ARRIVALS PER HR=

put(XX2) ;
new-line; new-line; new-line; new-line;

end RPTGEN;

function GGUBS(DSEED: in float) return RN is
tmpint : integer;

99

• ' ' . . -, ' . . " . . " ' ' ' " .. ' -' .'' ," "''."" -. "" , . , ". . . , . "-". ., -" -" -" -"-, , , \ .

tmpreal : float;
SEED : float := DSEED;

begin

for I in R' range loop
tmpreal :=SEED*3.141592;
tmnpint integer(tmpreal);
tmpreal :=trpreal - float(tmpint);

if tmpreal < 0.0 then
tmpreal := -tmpreal;

end if;

trupreal :=2.000*trnpreal;
R(I) :=tipreal;

SEED tinpreal;
end loop;
return R;

end GGUBS;

procedure INITLZ(CLOCK,TLE,B,S: in out float;
IMEVT,LQT,LST,MQ,F,ND: in out integer;
IIR :in out integer;
MIAT,XXT :in out float;
R : in out RN;
FEL :in out FUTUREEVENT) is

--SET SIMULATION CLOCK TO ZERO.
--ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
--IN~ITIALIZE C~mUFATIVE STATISTICS TO 0.

RR: float;
X: float;

--GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
--ARRIVAL IN FEL(1)K.SET FEL(2) TO "INFINITY: TO INDICATE
--THIAT A DEPARTURE IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY

begin

CLOCK :0.0;

IMEVT :0;
LQT 0;
LST :0;
TLE :0.0;

B := 0.0;
MQ :=0;
S :0.0;
F : 0;
ND :0;

RR :R(IIR);

100

X : -LN(RR);
X :=MIAT * X;
XXT := 1.0;
FEL(l) : CLOCK + X;
FEL(2) 1.0e30;
IIR := IIR + 1;

end INITLZ;

procedure TIMAD(IYEVT,NUMEVS,ND,F,IIR,MQ,II : in out
integer;

CLOCK,B,S,XXT,[4IAT,MSVT,DSEED : in out
float;

FEL : in out FUTURE EVENT) is
-- TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
-- FUTURE EVENT LIST AND ADVANCES THE CLOCK.

FMIN: float:= 1.0e29;
-- SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

begin

IMEVT := 0;

for I in 1 .. NUMEVS loop

if FEL(I) >= FMIN then null;

else

FMIN : FEL(I);
IMEVT : I;

end if;
end loop;

if IMEVT > 0J tnen null;

else
-- ERROR CONDITION : FUTURE EVENT LIST EMPTY.

II := 11;
PUT(" FUTURE EVENT LIST EMPTY - SIMULATION CANNOT

CONTINUE.");
RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

end if;
-- ADVANCE SIMULATION CLOCK
-- NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
--AT TIME FEL(IMEVT).

CLOCK := FEL(IMEVT);

end TIMADV;

101

" -' ' .' . . -: . .. - , ,; - - " "- " ' "" '"" - " '. '. ' " " "," , - o -" " . . . "

procedure ARRVL(LST,LQTMQIIR,ND,F,II : in out integer;
CLOCK,B,TLE,MSVT,XXT,MIAT,S,DSEED : in out

float;
CHKOUT : in out ARRIVE;
FEL : in out FUTURE EVENT;
R : in out RN) is

--DETERMINE IF SERVER IS BUSY (IS TRUCK BEING CURRENTLY
-- UNLOADED) .

RR,X,IAT : float;
I : integer;

begin

if LST = 1 then

LQT : LQT +1;
I := LQT + LST;

if I > 100 then
-- ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.

-- INCREASE DIMENSION OF VARIABLE CHKOUT(I).
II := 11;
PUT(" OVERFLOW IN ARRAY CHKOUT. INCREASE

DIMENSION.,");
NEW LINE;
PUTT" SIMULATION CANNOT CONTINUE.");
RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

else

CHKOUT(I) := CLOCK;
-- UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F
-- ARE NOT UPDATED WHEN AN ARRIVAL OCCURS.

B := B + (CLOCK - TLE);
TLE := CLOCK;

if LQT > MQ then
MQ := LQT;

end if;

--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
-- ARRIVAL EVENT.

RR := R(IIR);
X := -LN(RR);
IAT : MIAT * X;

XXT : XXT + 1.0;
FEL(1) := CLOCK + IAT;

IIR :- IIR +1;
end if;

else
--SERVER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL T

102

-- TIME OF NEW CUSTOMER.
LST : 1;
CHKOUT(1) := CLOCK;

-- GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
-- SCHEDULE THE DEPARTURE FOR THE ARRIVAL.

RR:= R(IIR) ;
X -LN(RR);
X : MSVT * X;
FEL(2) := CLOCK + X;
TLE : CLOCK;
IIR : IIR + 1;

if LQT > MQ then
MQ := LQT;

end if;

RR := R(IIR);
X := -LN(RR);
IAr : MIAT * X;
XXT : XXT + 1.0;
FEL(1) := CLOCK + IAT;
IIR := IIR + 1;

end if;

end ARRVL;

procedure DPART(B,CLOCK,TLE,S,MSVT : in out float;
ND,F,LQT,IIR,LST : in out integer;

CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTUREEVENT) is

-- UPDATE CUMULATIVE STATISTICS: B, S, ND, F.
-- NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.

RT,RR,X,SVT : float;
Ii : integer;

begin

B := B + (CLOCK - TLE);

TLE : CLOCK;
RT : CLOCK - CHKOUT(1);
S : S + RT;
ND : ND + 1;

if RT > 4.0 then
F := F + 1;

end if;

-- CHECK CONDITION OF WAITING LINE.
if LQT >= 1 then

103

• . .- • . - . • ., .. - . .-- o "

for I in 1 .. LQT loop
Ii := I + 1;
CHKOUT(I) : CHKOUT(Il);

end loop;
--UPDATE SYSTEM STATE.

LQT := LQT - I;
--GENERATE NEW SERVICE rIME FOR CUSrOv4ER BEGINNING
--SERVICE, AND SCHEDULE NEXT DEPARTURE EVENT.

RR := R(IIR);
X := -LN(RR);
SVT := MSVT * X;
FEL(2) := CLOCK + SVT;
IIR := IIR + 1;

else

--NO CUSTOMERS IN LINE. SERVER BECOMES IDLE.
--NEXT DEPARTURE TIME SET TO "INFINITY'.

LST := 0;
FEL(2) := l.0e30;

end if;

end DPART;

begin

while II <= 10 loop
--WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS

R := GGUBS(DSEED);
--IIR WILL INDEX THE RANDOM NUMBER GENERATOR.

IIR := 1;
--CALL INITILIZATION ROUTINE

INIrLZ(CLOCK,TLE,B,S,IMEVT,LQT,LST,MQ,F,ND,IIR,
MIAT,XXT,R,FEL);

--CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
--AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.

while ND < NCUST loop

TIMADV(IMEVT,NUMEVS,ND,F,IIR,MQ,II,CLOCK,B,S,XXT,MIAT,
MSVT,DSEED,FEL);

--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
--IMEVT = 1 FOR AN ARRIVAL
--IMEVT = 2 FOR A DEPARTURE

if IMEVT = 1 then
ARRVL(LST,LQT,MQ,IIR,ND,F,II,CLOCK,B,TLE,MSVT,XXT,

MIAT,S,DSEED,CHKOUT,FEL,R);

104

..

else

DPART(B,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL);
end if;

end loop;
-- CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN TO
-- TIMADV.

case II is
when 1 => DSEED 567.0;

when 2 => DSEED 459.0;
when 3 => DSEED 361.0;
when 4 => DSEED := 663.0;
when 5 => DSEED 613.0;
when 6 => DSEED 867.0;
when 7 => DSEED : 969.0;
when 3 => DSEED 1071.0;
when 9 => DSEED 1173.0;
when 10 => DSEED 2717.0;
when others => null;

end case;

RPTGEN(B,CLOCK,S,XXT,MIAT,M4SVT,DSEED,ND,F,IIR,MQ);

-- WHEN SIMULATION OVER GENERATE REPORTS.
II := II + 1;

case II is
when 2 => DSEED 459.0;
when 3 => DSEED 561.0;
when 4 => DSEED 663.0;
when 5 => DSEED := 613.0;
when 6 => DSEED := 867.0;
when 7 => DSEED 969.0;
when 8 => DSEED 1071.0;
when 9 => DSEED 1173.0;
when 10 => DSEED 2717.0;
when others => null;

end case;
end loop;
end TRUCK;

105

- . .. - -. .- •

APPENDIX L

SOURCE LISTING
TRUCK SIMULATION PROGRAM

ADA LINE-BY-LINE TRANSLATION WITH 3500 ELEMENT ARRAY

VADS COMPILER RELEASE V04.06

--
--

-- THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION

-- PROGRAM WRITTEN IN FORTRAN. TITLE OF THE PROGRAM IS

-- TRUCK. THIS PROGRAM IS A LINE BY LINE TRANSLATION OF THE

-- FORTRAN PROGRAM INTO ADA.
--
--

with text io; use textio;

with log; use log;

procedure trk is

package int io is new integerio(integer);
package real io is new floatio(float);
use int io; use real io;

NR : integer;
DSEED : float := 567.0;
type RN is array(integer range 1 .. 3500) of float;

type FUTUREEVENT is array (1 .. 2) of float;
type ARRIVE is array (1 .. 100) of float;

MEAT : float 1.0/3.0;
MSVT : float 0.25;
CLOCK,TLE,B,S float;
NUMEVS : irteger :=2;
II : integer := 1;

* LQT,LST,MQ,F : integer;
ND,IIR,IMEVT : integer;
XXT : float;
CHKOUT : ARRIVE;
R : RN;
FEL : FOTUREEVENT;

NCUST : integer := 1500;

--

procedure RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED : in out
float; ND,F,IIR,MQ in out integer) is

-- COMPUTE SUMMARY STATISTICS.

106

.- ------.

RHO, AVGR: float;
XXi, XX2: float;
PC4: float;

begin

RHO B/CLOCK;
AVGR S/float(ND);
PC4 float(F)/float(ND);
XXI= S/CLOCK;
XX2 XXT/CLOCK;
put(" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-

SINGLE SERVER QUEUE");
new line; new line; new line;
putt" DSEED = - "); put7DSEED); new line;
put(" MEAN ARRIVAL TIME(MIAT) = "); put(MIAT);
new line;
putt" MEAN SERVICE TIME(MSVT) = "); put(MSVT);
new line;
new line;
put(" PROPORTION OF TIME DOCK CREW IS BUSY ");
put(RHO);
new line; new line;
put(" MAXIMUM LENGTH OF WAITING LINE ="); put(MQ);
new line; new line;
putt" AVERAGE TIME TO TRANSIT SYS."); put(AVGR);
put("HOURS.");
new line; new line;
putt" PROPORTION OF rRUCKS TAKING FOUR OR MORE HOURS..
IN THE SYSTEM"); put(PC4);
new line; new line;
putt" SIMULATION RUN LENGTH"); put(CLOCK);
put("HOURS.");
new line; new line;
put(" NUMBER OF TRUCKS UNLOADED ="); put(ND);
new line; new line;
putt" NUMBER OF RANDOM NUMBERS USED =") ; put(IIR);
new line; new line;
putt" AVERAGE-NUMBER OF UNITS IN SYS.= ") ; put(XXl);
new line; new line;
putt" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=");
put(S);
put(" (tRUCKS PER HR)");
new line; new line;
putt" AVERAGE-NUMBER OF ARRIVALS PER HR=

put(XX2);
new-line; newline; new-line; new-line;

end RPTGEN;

107

r r m a ?A D~r T 1"N~ r% L9 M V 1 UT 0 TJM UT M J W k1 M t Y V M

function GGUBS(DSEED: in float) return RN is
type sixdigit is digits 6;
tmpint : integer;
tmpreal, temp : sixdigit;
SEED : sixdigit;

begin

SEED := sixdigit(DSEED);

for I in R'range loop
tmpreal : SEED*3.141592;
tmpint :=integar(tmpreal) ;

temp := tmpreal - sixdigit(tunpint);

if temp >= 0.5 then
tmpint : tinpint + 1;
tmpreal := tmpreal - sixdigit(tmpint);

else
tmpreal temp;

end if;

if tmpreal <= 0.0 then
tmpreal :=-tmpreal;

end if;

tmpreal := 2.000*tmpreal;
R(I) :=float(tmpreal);
SEED := tmpreal;

end loop;
return R;

end GGUBS;

procedure INITLZ(CLOCK,TLE,B,S: in out float;
IMEVT,LQT,LST,MQ,F,ND: in out integer;
IIR : in out integer;
MIAT,XXT : in out float;
R : in out RN;
FEL : in out FUTUREEVENT) is

--SET SIMULATION CLOCK TO ZERO.
--ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
--INITIALIZE CUMULATIVE STATISTICS TO 0.

RR: float;
X: float;

--GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
--ARRIVAL IN FEL(1)K.SET FEL(2) TO "INFINITY: TO INDICATE
--THAT A DEPARTURE IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY

begin

1, 8

i '" - - ' r " - " -"-" J h . " - " L _ "

CLOCK 0.0;
IMEVT : 0;
LQT : 0 ;
LST 0;
TLE 0.0;
3 := 0.0;

:Q :=0;
S : .0;
F 0;
ND : 0;
RR :=R(IIR);
X := -LN(RR) ;

X MIAT * X;
XXT := 1.0;
FEL(l) : CLOCK + X;
FEL(2) := 1.0e30;
IIR := IIR + 1;

end INITLZ;

procedure TIMADV(IMEVT,NUMEVS,ND,F,IIR,MQ,II : in out
integer;

CLOCK,B,S,XXT,i4IAT,MSVT,DSEED : in out
float;

FEL : in out FUTURE EVENT) is
--TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
--FUTURE EVENT LIST AND ADVANCES THE CLOCK.

FMIN: float:= 1.0e29;
-- SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

begin

IMEVT := 0;
for I in 1 .. NUMEVS loop

if FEL(:) >= FMIN then null;

else

FMIN : FEL(I);
IMEVT : I;

end if;
end loop;

if IMEVT > 0 then null;

else
-- ERROR CONDITION : FUTURE EVENT LIST EMPTY.

109

II := i1;

PUT(" FUTURE EVENT LIST EMPTY - SIMULATION CANNOT
CONTINUE.");

RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
end if;

-- ADVANCE SIMULATION CLOCK
-- NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
-- AT TIME FEL(IMEVT)

CLOCK := FEL(IMEVT);

end TIMADV;

procedure ARRVL(LST,LQT,MQ,IIR,ND,F,II : in out integer;
CLOCK,B,TLE,MSVT,XXT,MIAT,S,DSEED : in out

float;
CHKOUT : in out ARRIVE;
FEL : in out FUTURE EVENT;

R : in out RN) is
-- DETERMINE IF SERVER IS BUSY (IS TRUCK BEING CURRENTLY
-- UNLOADED).

RR,X,IAT : float;
I : integer;

oegin

if LST = 1 then
LQT LQT +1;
I := LQT + LST;

if I > 100 then
-- ERROR CONDITION dAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.
-- INCREASE DIMENSION OF VARIASLE CHKOUT(I).

II := 11;
PUT(" OVERFLOW IN ARRAY CHKOUT. INCREASE

DIMENSION. ,")
NEW LINE;
PUT(, SIMULATION CANNOT CONTINUE.") ;
RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

else

CHKOUT(I) := CLOCK;
-- UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F
-- ARE NOT UPDATED WHEN AN ARRIVAL OCCURS.

8 := 3 + (CLOCK- TLE);
TLE := CLOCK;

if LQT > MQ then
MQ := LQT;

end if;

110

--- - - ,- . -, -. %. -.- .- -. -. 4-. - ---- 7- - I% -1 --

--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
--ARRIVAL EVENT.

RR := R(IIR);
X := -LN(RR);
IAT :MIAT * X;
XXT :XXT + 1.0;
FEL~i) := CLOCK + IAT;
IIR :=IR 41;

end if;

else
--SERVER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL
--TIME OF NEW CUSTOMER.

LST := 1;
CHKOUT(l) := CLOCK;

--GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
--SCHEDULE THE DEPARTURE FOR THE ARRIVAL.

RR:= R(IIR);
X :-LN(RR);
X :MSVT *A

FEL(2) :=CLOCK + X;
TLE CLOCK;
IIR :IIR + 1;

if LQT > MQ then
MQ := LQT;

end if;

RR :=R(IIR);
X :=-LN(RR);

MIAT *X
XXT :AXT + 1.0;
FEL(l) := CLOCK + IAT;
IIR := IIR + 1;

end if;

end ARRVL;

procedure DPART(B,CLOCK,TLE,S,MSVT : in out float;
ND,F,LQT,IIR,LST : in out integer;
CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTUREEVENT) is

--UPDATE CUMULATIVE STATISTICS: B, S, ND, F.
--NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.

RTRRXSVT : float;
Il integer;

begin

elsll

--. VR SIL..PAE YTMSTT-N REOR ARRIVAL. ...

B B + (CLOCK -TLE);

TLE CLOCK;
RTr CLOCK - CHKOUT(l);
S S 4- RT;
ND :ND 4- 1;

if RT > 4.0 then
F :=F + 1;

end if;

--CHECK CONDITION OF WAITING LINE.
if LQT >= 1 tflen

for I in 1 .. LQT loop
11 := I +-1
CHKOUT(I) :=CHKOtJT(Il);

end loop;
--UPDATE SYSTEM STATE.

LOT :=LQT - 1;
--GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
--SERVICE, AND SCH-EDULE NEXT DEPARTURE EVENT.

RR := R(IIR);
X :=-LN(RR);
SVT :=MSVT
FEL(2) := CLOCK +- SVT;
IIR := IIR +- 1;

else

--NO CUSTOMERS IN LINE. SERVER BECOMES IDLE.
--NEXT DEPARTURE TIME SET ro "INFINITY".

LST := 0;
FEL(2) := .0e30;

end if;

end DPART;

beg in

while II <= .11 loop
* --WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS

R := GGUBS(DSEED);
--IIR WILL INDEX THE RANDOM NUMBER GENERATOR.

IIR :1
--CALL INITILIZATION ROUTINE

INI-rLZ(CLOCK,TLE,B,S,IMEVT,LQT,LST,MQ,F,ND,IIR,
MIAT,XXT,R,FEL);

112

-- CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
-- AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.

while ND < NCUST loop

TIMADV(IMEVT,NUMEVS,ND,F,IIR,MQ,II,CLOCK,B,S,XXT,MIAT,
MSVT,DSEED,FEL);

--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
-- IMEVT = 1 FOR AN ARRIVAL
-- IMEVT = 2 FOR A DEPARTURE

if IMEVT = 1 then
ARRVL(LST,LQT,MQ,IIR,ND,F,II,CLOCK,B,TLE,MSVT,XXT,

MIAT,S,DSEED,CHKOUT,FEL,R);
else

DPART(B,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL);
end if;

end loop;
--CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN TO
--TIMADV.

case II is
when 1 => DSEED := 567.0;

when 2 => DSEED : 459.0;
when 3 => DSEED := 561.0;
when 4 => DSEED : 663.0;
when 5 => DSEED : 613.0;
when 6 => OSEED : 867.0;
when 7 => DSEED := 969.0;
when 8 => DSEED := 1071.0;
when 9 => DSEED : 1173.0;
when 10 => DSEED : 2717.0;
when others => null;

end case;

RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
--WHEN SIMULATION OVER GENERATE REPORTS.

II := II + 1;

case II is
when 2 => DSEED : 459.0;
when 3 => DSEED : 561.0;
when 4 => DSEED : 663.0;
when 5 => DSEED := 613.0;
when 6 => DSEED := 867.0;
when 7 => DSEED := 969.0;
when 8 => DSEED := 1071.0;
when 9 => DSEED : 1173.0;
when 10 => DSEED := 2717.0;
when others => null;

end case;
end loop;
end trk;

113

APPENDIX M

SOURCE LISTING
TRUCK SIMULATION PROGRAM

NDuA LINE-BY-LINE TRANSLATION WITH 6500 ELEMENT ARRAY
'lADS COMPILER RELEASE V04.06

--

-THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION
-PROGRAM WRITTEN IN FORTRAN. TITLE OF THE PROGRAM IS
-TRUCK. THIS PROGRAM IS A LINE BY LINE TRANSLATION OF THE
-- FORTRAN PROGRAMV INTO ADA.

--

with text_- io; use text_io;

6 with log; use log;

procedure trk is

package int-io is new integer io~integer);
package real io is new float To(float);
use mnt-io; use real jo;

NR : integer;
DSEED :float :=567.0;
type RN is array(integer range 1 .. 6500) of float;
type FUTURE -EVErIT is array kl .. 2) of float;
type ARRIVE is array (1 .. 100) of float;
A4IAT :float := .0/3.03;
ASVT :float :=0.25;
CLOCK,TLE,B,S :float;
NUMEVS :integer :=2;
II : integer 1;
LQT,LST,MQ,F :integer;
NO,IIR,IMEVT :integer;
XXT :float;
CdKOUT :ARRIVE;
R :RN;
FEL :FUTUREEVENT;
NCUST :integer :=3000;

procedure RPTGFq(B,CLOCK,S,XXT,MIAT,MSVT,DSEED :in out
float; ND,F,IIR,MQ :in out integer) is

--COMPUTE SUMMARY STATISTICS.

114

RHO, AVGR: float;
XXl, XX2: float;
PC4: float;

begin

RHO.' B/CLOCK;
AVGR S/float(ND);
PC4 : float(F)/float(ND);
XXI : S/CLOCK;
XX2 : XXT/CLOCK;
put(" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-

SINGLE SERVER QUEUE");
new line; new line; new line;
putT" DSEED = ") ; put(DSEED); newline;
put(" MEAN ARRIVAL TIME(MIAT) = S); put(MIAT);
new line;
put(" MEAN SERVICE TIME(MSVT) = "); put(MSVT);
new-line;
new-line;
putT" PROPORTION OF TIME DOCK CREW IS BUSY =")
put (RHO);
new line; new line;
putT" MAXIMUM LENGTH OF WAITING LINE =") ; put(MQ);
new line; new line;
putT" AVERAGE TIME TO TRANSIT SYS."); put(AVGR);
put("HOURS.");
new line; new line;
putT" PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS..
IN THE SYSTEM"); put(PC4);
new line; new line;
put(" SIMULATION RUN LENGTH"); put(CLOCK);
put("HOURS.");
new line; new line;
putt" NUMBER OF TRUCKS UNLOADED ="); put(ND);
new line; new line;
put(" NUMBER OF RANDOM NUMBERS USED ="); put(IIR);
new line; new line;
putT" AVERAGE NUMBER OF UNITS IN SYS.= ") ; put(XXl);
new line; new line;
putT" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=");
put(S);
put(" (TRUCKS PER HR)");
new line; new line;
putT" AVERAGE NUMBER OF ARRIVALS PER HR=
put(XX2);
newline; new-line; newline; newline;

end RPTGEN;

115

. • + ..: : , ..:.+ .. ::- .: . ::. +.! + - . . **.. *.. -.

function GGUBS(DSEED: in float) return RN is
type sixdigit is digits 6;
tmpint : integer;
tmpreal, temp : sixdigit;
SEED :sixdigit;

begin

SEED :sixdigit(DSEED);

for I in R'range loop
tmpreal SEED*3.141592;
tipint integer(tmpreal);
temp :=tmpreal - sixdigit(tinpint);

if temp >= 0.5 then
timpint tmpint + 1;
tmpreal :=tmpreal - sixdigit(tmpint);

else
tmpreal :=temp;

end if;

6 if trnpreal <= 0.0 then
tmpreal :=-tmpreal;

end if;

taipreal :=2.000*tmpreal;
R(I) :=float (tmpreal);
SEED := tmpreal;

end loop;
return R;

end GGUBS;

--

procedure IN.TLZ(CLOCK,TLE,B,S: in out float;
IMEVT,LQT,LST,MQ,F,ND: in out integer;
HIR : in out integer;
MIAT,XXT : in out float;

R : in out RN;
FEL :in out FUTUREEVENT) is

--SET SIMULATION CLOCK TO ZERO.
--ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
--INITIALIZE CUMULATIVE STATISTICS TO 0.

RR: float;
X: float;

--GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
--ARRIVAL IN FEL(l)K.SET FEL(2) TO "INFINITY: TO INDICATE

-THAT A DEPARTURE IS NOT POSSIBLE WHILE THE SYSTEM
IS EMPTY

begin

116

CLOCK 0.0;
IMEVT : 0;
LQT : 0;
LST : 0;
TLE : .0;
B := 0.0;
AQ :=0;
S 0.0;
F : 0;
ND : ;
RR R(IIR);
X -LN(RR);
X MIAT * A;
XXT := 1.0;
FEL(l) CLOCK + X;
FEL(2) := 1.0e30;
IIR := IIR + 1;

end INITLZ;

procedure TIMADV(IMEVT,NUMEVS,ND,F,IIR,MQ,II : in out

integer;

CLOCK,B,S,XXT,MIAT,MSVT,DSEED : in out
float;

FEL : in out FUTURE EVENT) is
--TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
--FUTURE EVENT LIST AND ADVANCES THE CLOCK.

FMIN: float:= 1.0e29;
--SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

begin

IMEVT • =;
for I in 1 .. NUMEVS loop

if FEL(I) >= FMIN then null;

else

FMIN FEL(I);
IMEVT " I;

end if;
end loop;

if IMEVT > 0 then null;

else
-- ERROR CONDITION : FUTURE EVENT LIST EMPTY.

117

," ,.-," --.',}'..- -<'->-i-<." .-,},'.-.-'.-.--. '.- -i -i -.',-..................".............-......... ..-.---.-.......". ."," .- .. .-... ,

II := i1;

PUT(" FUTURE EVENT LIST EMPTY - SIMULATION CANNOT
CONTINUE.");

RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
end if;

-- ADVANCE SIMULATION CLOCK
-- NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
-- AT TIME FEL(IMEVT).

CLOCK :- FEL(IMEVT);

end TIMADV;

--- ---I
procedure ARRVL(LST,LQT,MQ,IIR,ND,F,II : in out integer;

CLOCK,B,TLE,MSVT,XXT,MIAT,S,DSEED : in out
float;

CHKOUT : in out ARRIVE;

FEL : in out FUTURE EVENT;

R : in out RN) is
-- DErERMINE IF SERVER IS BUSY (IS TRUCK BEING CURRENTLY
-- UNLOADED).

RR,X,IAT : float;
I : integer;

oegin

if LST = 1 then
LQT LQT +1;
I := LQT + LST;

if I > 100 then
-- ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.
-- 'JCREASE DIMENSION OF VARIABLE CHKOUT(I).

II :- 11;
PUT(" OVERFLOW IN !1RAY CHKOUT. INCREASE

DIMENSION.,-);
NEW LINE;
PUT(" SIMULATION CANNOT CONTINUE.");
RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

else

CHKOUT(I) := CLOCK;
-- UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F
-- ARE NOT UPDATED WHEN AN ARRIVAL OCCURS.

B := B + (CLOCK - TLE);
TLE := CLOCK;

if LQT > MQ then
MQ := LQT;

end if;

118

. i

--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
--ARRIVAL EVENT.

RR := R(IIR);
X := -LN(RR);
IAT MIAT *A

XXT :XXT + 1.0;
FEL(1) := CLOCK + IAT;
IIR := IIR +l;

end if;

else
--SERV1ER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL
--TIME OF NEW CUSTOMER.

LST :=1;
CH±COtT(l) := CLOCK;

--GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
--SCHEDULE THE DEP'ARTURE FOR THE ARRIVAL.

RR:= R(IIR);
X :=-LN(RR);
X :MSVT * X;
FEL(2) := CLOCK + X;
TLE CLOCK;
IIR IIR + 1;

if LQT > MQ then
MQ := LQT;

end if;

RR := R(IIR);
X := -LN(RR);
IAT MIAT * X;
XXT :=XXT + 1.0;
FEL(1) := CLOCK + IAT;
IIR :=IIR + 1;

end if;

end ARRVL;

procedure DPART(B,CLOCK,TLE,S,4SVT : in out float;
ND,F,LQT,IIR,LST : in out integer;
CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTUREEVENT) is

--UPDATE CUMULATIVE STATISTICS: B, S, ND, F.
--NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.

RT,RR,X,SVT : float;
Il :integer;

begin

119

B B + (CLOCK - TLE);
TLE - CLOCK;
RT CLOCK - CHKOUT(l);
S S + RT;
ND ND + 1;

if RT > 4.0 then
F := F + 1;

end if;

-- CHECK CONDITION OF WAITING LINE.
if LQT >= . then

for I in 1 .. LQT loop
Tl := I + 1;
CHKOUT(I) := CHKOUT(Il);

end loop;
-- UPDATE SYSTEM STATE.

LQT := LQT - 1;
-- GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
-- SERVICE, AND SCHEDULE NEAT DEPARTURE EVENT.

RR := R(IIR);
X := -LN(RR);
SVT := MSVT * X;
FEL(2) := CLOCK + SVT;
IIR := IIR + 1;

else

-- NO CUSTOMERS IN LINE. SERVER BECOMES IDLE.
-- NEXT DEPARTURE TIME SET TO "INFINITY".

LST := 0;
FEL(:) l.Oe3O;

end if;

end DPART;

begin

while II <= 10 loop
-- WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS

R := GGUBS(DSEED);
-- IIR WILL INDEX THE RANDOM NUMBER GENERATOR.

IIR : ;
--CALL INITILIZATION ROUTINE

INITLZ(CLOCK,TLE,B,S,I MEVTr,LQT, LST, MQ,F,ND,IIR,
MIAT,XXT,R,FEL);

120

-- CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT

-- AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.
while ND < NCUST loop

TIMADV(IMEVT,NUMEVS,ND,F,IIR,MQ,II,CLOCK,B,S,XXT,MIAT,
MSVT,DSEED,FEL);

--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
-- IMEVT = 1 FOR AN ARRIVAL
-- IMEVT = 2 FOR A DEPARTURE

if IMEVT = 1 then
ARRVL(LST,LQT,MQ,IIR,ND,F,II,CLOCK,B,TLE,MSVT,XXT,

MIAT,S,DSEED,CHKOUT,FEL,R);
else

DPART(B,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL);
end if;

end loop;
-- CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN TO
-- TIMADV.

case II is
when 1 => DSEED 567.0;
when 2 => DSEED 459.0;
when 3 => DSEED := 561.0;
when 4 => OSEED 663.0;
when 5 => DSEED 613.0;

when 6 => DSEED 867.0;
when 7 => DSEED 969.0;
when 8 => DSEED 1071.0;
when 9 => DSEED 1173.0;
when 10 => DSEED 2717.0;
when others => null;

end case;

RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
-- WHEN SIMULATION OVER GENERATE REPORTS.

II := II + 1;

case II is
when 2 => DSEED 459.0;
when 3 => DSEED 561.0;
when 4 => DSEED 663.0;
when 5 => DSEED 613.0;
when 6 => DSEED 867.0;
wnen 7 => DSEED 969.0;
when 8 => DSEED 1071.0;
when 9 => DSEED 1173.0;
when 10 => OSEED 2717.0;
when others => null;

end case;
end loop;
end trk;

121

APPENDIX N

SOURCE LISTING
TRUCK SIMULATION MAIN PROGRAM

ADA REDESIGN
TELESOFT-ADA VERSION 1.5

with TEXTIO ; use TEXT IO;
use FLOAT 10;

with SIMULATIONROUTINES ; use SIMULATIONROUTINES;

procedure TRUCKSIMULATION is

MEAN INTER ARRIVALTIME : FLOAT : 1.0/3.0;
MEANSERVICE_TIME : FLOAT 0.25
STATS : STATISTICS;
SERVICEQUEUE : QUEUE;

RANDOMNUMBER : RANDOMNUMBER RECORD;
begin

while STATS.REPETITION < 10 loop
INIfIALIZE (STATS,

SERVICEQUEUE,
MEAN INTERARRIVALTIME,
RANDOMNUMBER);

while STATS.TOTAL DEPARTURES < 1500 loop
if STATS.NEXT ARRIVAL < STATS.NEXTDEPARTURE then

GENERATEARRIVAL (STATS,
SERVICE QUEUE,
MEAN INTER ARRIVAL rIME,
MEAN SERVICE TIME,
RANDOM_NUMBER);

else
GENERATE DEPARTURE (STATS,

SERVICEQUEUE,
MEAN SERVICE TIME,
RANDOMN'J-432R)

end if;
end loop;
GENERATEREPORT (STATS,

SERVICE QUEUE,
MEAN INTER ARRIVALTIME,

MEAN SERVICE TIME,
RANDOM_NUMBER) ;

end loop;
end TRUCKSIMULATION;

122

~)

APPENDIX 0

SOURCE LISTING
SIMULATION ROUTINES PACKAGE

ADA REDESIGN
TELESOFT-ADA VERSION 1.5

with TEXTIO; use TEXTIO;
use FLOAT 10;
use INTEGERIO;

with LOG; use LOG;

package SIMULATIONROUTINES is

type SEEDARRAY is array (INTEGER range 1..10) of FLOAT;

type RANDOM NUMBER RECORD is record
NUMBER- FLOAT;
SEEDS : SEEDARRAY : (1 => 567.0,

2 => 459.0,

3 => 561.0,
4 => 663.0,
5 => 613.0,
6 => 867.0,

7 => 969.0,
8 => 1071.0,
9 => 1173.0,

10 => 2717.0);

DSEED FLOAT;
COUNT INTEGER;

end record;

type SIMPLEARRAY is
array (INTEGER range 1..100) of FLOAT;

type STATISTICS is record
CLOCK : FLOAT;

NEXT ARRIVAL : FLOAT;

NEXT DEPARTURE : FLOAT;

TIMELAST EVENT : FLOAT;
SERVER BUSY TIME : FLOAT;

TOTAL TIME IN SYSTEM : FLOAT;

TOTAL ARRIVALS : INTEGER;

TOTAL DEPARTURES : INTEGER;
MAX_Q LENGTH : INTEGER;

FOUR HOURS IN SYSTEM : INTEGER;

REPETITION INTEGER 0;
end record;

123

type QUEUE is record
ELEMENT : SIMPLE _RRAY;
LENGTH : INTEGER 0;
ISIDLE : BOOLEAN TRUE;

end record;

procedure GENERATEARRIVAL
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICE TIME : in FLOAT;
RANDOM NUMBER : in out

RANDOMNUMBERRECORD);

procedure GENERATE DEPARTURE
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN SERVICE TIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure INITIALIZE
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVALTIME : in FLOAT;
RANDOM NUMBER - in out

RANDOMNUMBERRECORD);

procedure GENERATEREPORT
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEANSERVICE 'rIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure RAN
(RANDOMNUMBER in out RANDOM NUMBERRECORD);

end SIMULATION ROUTINES;

package body SIMULATIONROUTINES is

procedure GENERATEARRIVAL
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICETIME : in FLOAT;
RANDOM NUMBER in out

RANDOMNUMBERRECORD) is

124

. -. :, : : :.•. .- - - - . --. .' -- . "

SERVICETIME :FLOAT;
INTERARNRIVALTIME :FLOAT;

begin
STATS.CLOCK STATS.NEXT ARRIVAL;
SERVICEQUEUE.LENGTH SERVICEQUEtJE.LENGTH + 1;
SERVICEQUEUE.ELEMENT (SERVICEQUEUE.LENGTH)

:=STAT S.CLOCK;
if SERVICE QUEUE.IS IDLE then

SERVICEQUEUE.ISIDLE :FALSE;
RAN (Ra-\NDOM 4 NUMBER)MENSRIETE
SERVICETIME ENSRIETM

*(-LN

(RANDOMNCJMBER.NUMBER));
STATS.NEXTDEPARTURE srATS.,CLO3CK

+ SERVICETIME;
else

STATS.SERVERBUSYTIME STATS.SERVERBUSYTIME
+ (STATS.CLOCK
- STATS.TIMELASTEVENT);

end if;
STATS.TIMELASTEVENT :STATS.CLOCK;
STATrs.tOTAL ARRIVALS :STATS.TOTAL ARRIVALS + 1;
if SERVICEQUEUE.LENGTH > STATS.MAX_- _LENGTH then

SrATS.M AXQLENGTH 9ERVICE QU-EUEf.LENGTH;
end if;
RAN (RA NDOMNUMBER);
INTERARRIVALTIME MEAN INTER-ARRIVALTIME

*(-LN (RANDOMNtJMBER.NUMBER));
STATS.NEXTARRIVAL STATS.CLOCK

+ INTERARRIVALTIME;
end GENERATEARRIVAL;

procedure GENERATE DEPARTURE
(STATS :in out STkTISTICS;
SERVICEQUEUE :in out QUEUE;
MEAN -SERVICE' Zr114E :in FLOAT;
RANDOMNUMBER :in out

RANDOMNUMBERRECORD) is

TIME -IN SYSTEMTHI3_DEAR'rURE :FLOAT;
SERVfCETIME :FLOAT;

begin
STATS.CLOCK STATrS.NEXTDEPARTURE;
STATS.SERVERBUSYTIMAE : STATS.SERVERBUSYTIME

+ (STATS.CLOCK
- STATS.TIME LASTEVENT);

srATS.TIME LAST EVENT = sTrATS.CLOCR;
,rIMEINSYSTEMTHISDEPARTURE :STATS.CLOCK

- SERVICEQUEUE.ELEMENT(1);
STATS.TQTAL_,rIMEINSYSTEM4

125

: STATS.TOTAL TIME IN SYSTEM
+ TIME_IN SYSTE r-IS-DEPARTURE;

STATS.TOTALDEPARTURES : STATS.TOTALDEPARTURES
+ 1;

if TIME IN SYSTEM THIS DEPARTURE > 4.0 then
STATS.FOURHOURSIN SYSTEM

:= STATS.FOURHOURSIN SYSTEM + 1;
end if;

if SERVICEQUEUE.LENGTH - 1 = 0 then -- if queue
-- will be
-- empty
-- after this
-- departure

SERVICEQUEUE.LENGTH : 0;
SERVICEQUEUE.IS IDLE : TRUE;
STATS.NEXTDEPATURE := 1.0e33;

else
for INDEX in 1..SERVICE QUEUE.LENGTH - 1 loop

SERVICEQUEUE.ELEMENT (INDEX)
:= SERVICEQUEUE.ELEMENT(INDEX + 1);

end loop;
SERVICEQUEUE.LENGTH SERVICEQUEUE.LENGTH - 1;
RAN (RANDOMNUMBER);
SERVICETIME = MEANSERVICETIME

* (-LN

(RANDOM NUMBER.NUMBER));
STATS.NEXTDEPARTURE : STATS.CLOCK

+ SERVICETIME;
end if;

end GENERATEDEPARTURE;

procedure INITIALIZE
(STATS in out

STATISTICS;

SERVICE QUEUE : in out QUEUE;
MEANINTERARRIVALTIME : in FLOAT;
RANDOM NUMBER : in out

RANDOMNUMBERRECORD) is
ARRIVALTIME FLOAT;

oegin
STATS.REPETITION : STATS.REPETITION + 1;
RANDOMNUMBER.DSEED RANDOMNUMBER.SEEDS

-- (STATS.REPETITION);

RANDOM NUMBER.COUNT : ;
RAN (RANDOM NUMBER);
ARRIVALTIME MEAN INTER ARRIVALTIME

* (-LN (RANDOMNUMBER.NUMBER));

STATS.CLOCK 0.0;
STATS.TIME LASTEVENT : 0.0;

126

6 "-

:' -" -- . ; . - -- . - - . • L . - .

STATS.SERVER BUSYTIME 0.0;
STATS.TOTAL TIME IN SYSTEM 0.0;
STATS.TOTALARRIVALS 0
STATS.TOTAL DEPARTURES 0
STATS.MAX_Q-LENGTH 0
STATS.FOUR HOURS IN SYSTEM 0
STATS.NEXTARRIVAL STATS.CLOCK

+ ARRIVALTIME;
STATS.NEXT DEPARTURE 1.0e30;
SERVICE_QUEUE.LENGTH : 0;
SERVICE QUEUE.ISIDLE TRUE;

end INITIALIZE;

------ --

procedure GENERATE REPORT
(STATS : in out

STATISTICS;
SERVICEQUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEANSERVICE TIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD) is
TEMP : FLOAT;

begin
NEWLINE;
NEW LINE;
PUT ("RANDOM NUMBER GENERATOR SEED");
PUT (RANDOM NUMBER.SEEDS (STATS.REPETITION));
NEW LINE;
PUT ("MEAN INTERARRIVAL TIME =

PUT (MEANINTERARRIVALTIME);
NEW LINE;
PUT ("MEAN SERVICE TIME =

PUT (MEANSERVICE_TIME);
NEW LINE;
NEW LINE;
PUT ("PROPORTION OF TIME DOCK CREW IS BUSY =

TEMP := STATS.SERVERBUSY rIME / STATS.CLOCK;
PUT (TEMP);

NEW LINE;
NEW LINE;
PUT ("MAXIMUM LENGTH OF 4AITING LINE =
PUT (STATS.MAX_Q_LENGTH);
NEW LINE;
NEWLINE;
PUT ("AVERAGE TIME TO TRANSIT SYSTEM =
TEMP STATS.TOTAL TIME IN SYSTEM

/ FLOAT(STATS.TOTALDEPARTURES);
PUT (TEMP);
NEW LINE;

NEW LINE;
PUT ("PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS

127

-") ;
TEMP := FLOAT (STATS.FOUR HOURS IN SYSTEM)

/ FLOAT (3TATS.TOTALDEPARTURES);
PUT (TS-4P)
.~4 L INE;
NEW LINE;
PUT ("SIMULArION RUN LENGTH = ") ;
PUT (STATS.CLOCK)
PUT (" HOURS");
NEWLINE;
NEW LINE;
PUT ("NUMBER OF TRUCKS UNLOADED = ");
PUT (STATS.TOTALDEPARTURES);
NEW LINE;
NEW LINE;
PUT ("NUMBER OF RANDOM NUMBERS USED ")
PUT (RANDOMNUMBER.COUNT);
NEW LINE;
NEW LINE;
PUT ("AVERAGE NUMBER OF UNITS IN SYS. =
rEMP := STATS.TOTAL T.IMEINSYSTEM / STATS.CLOCK;
POT (TE. 2);
NEW LINE;
NEW LINE;
PUT ("TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) ="1) ;

PUT (STATS.TOTALTIMEINSYSTEM);
NEW LINE;
NEW LINE;
PUT ("AVERAGE NUMBER OF ARRIVALS PER HR =
TEMP := FLOAT (STATS.TOTAL ARRIVALS) / STATS.CLOCK;
PUT (TEMP);
NE4 LINE;
NEWLINE;

end GENERATE_REPORT;

proceiare RAN (RANDOMNUMBER in out
RANDOMNUMBERRECORD) is

tmTpint integer;
tmpreal float;

begin
tmpreal :- RANDOM NUMBER.DSEED*3.141592;

tmpint integer(tnpreal);
tmpreal := tmpreal - float(tmpint);
if trmpreal < 0.0 then

timpreal := -tmpreal;
end if;
tmpreal := 2.0 * tmpreal;
RANDOM NUMBER.NUMBER tmpreal;
RANDOM NUMBER.DSEED : tmpreal;
RANDOMNUMBER.COUNT RANDOMNUMBER.COUNT + 1;

end RAN;
end SIMULATIONROUTINES;

128

APPENDIX P

SOURCE LISTING
NATURAL LOG PACKAGE USED BY

ADA TRUCK SIMULATION PROGRAM

-- CALCULATES NATURAL LOGS, EXPONENTIATION AND SQRTS

package log is
function LN (x: in float) return float;
function LN (<: in integer) return float;
function "**" (a: in float; x: in float) return float;
function SQRT (a: in float) return float;

bounds error : exception;

end log;

package body log is

function LN (x: in float) return float is

result : float;
old: float;

term: float;
power: float;

oegin

if x>0.0 then

old :=.J;
term :=(x-l.0)/(x+l.0);

result :=2.0*term;
power :=term;

for index in 1 .. integer'last loop

power :=power* term* term;
result :=result+(2 .0 *power)/float(2*index+l);

if old=result then

exit;
end if;
old :=result;

end loop;
return result;

elsif x= 0 .0 then
return 1.0;

else
raise bounds-error;

end if;

129

end LN;

function LN (x: in integer) return float i3

begin
return(LN(float(x)));

end LN;
----------- ---

--

function "**" (a: in float; x: in float) return float is

factorial : float := 1.0;
result : float : 1.0;
power : float : 1.0;
old : float := 0.0;

begin
for limit in 1 .. integer'last loop

power := power*(x*LN(a));
factorial := factorial*float(limit);
result := result+(power)/factorial;

* if old=result
then
exit;

end if;
old :=result;

end loop;
return result;

end "**" ;
--

------------ --

function SQRT (a: in float) return float is
begin

if a=0.0 then
return 0.0;

else
return a**0.5;

end if;
end SQRT;

end log;

130

APPENDIX Q

SOURCE LISTING
TRUCK SIMULATION MAIN PROGRAM

ADA REDESIGN
VADS COMPILER RELEASE V04.06

with SIMULATIONROUTINES ; use SIMULATIONROUTINES;

procedure TRUCK SIMULATION is
MEAN INTER ARRIVAL TIME : FLOAT
MEAN SERVICETIME : FLOAT : 0.25

STATS : STATISTICS;
SERVICEQUEUE : QUEUE;
RANDOMNUM3ER : RANDOMNUMBERRECORD;

begin
while STATS.REPETITION < 10 loop

INITIALIZE (STATS,
SERVICEQUEUE,
MEAN INTERARRIVALTIME,
RANDOMNUMBER);

while STATS.TOTAL DEPARTURES < 1500 loop

if STATS.NEXT ARRIVAL < STATS.NEXTDEPARTURE then
GENERATEARRIVAL (STATS,

SERVICEQUEUE,
MEAN INTER ARRIVALTIME,
MEAN SERVIEE_TIME,
RANDOMNUMBER);

else
GENERATEDEPARTURE (STATS,

SERVICE QUEUE,
MEAN SERVICE TIME,
RANDOMNUMBER);

end if;
end loop;
GENERATEREPORT (STATS,

SERVICE QUEUE,
MEAN INTER ARRIVAL TIME,
MEAN SERVICE TIME,
RANDOMNUMBER);

end loop;

exception
when CONSTRAINT ERROR =>

GENERATEREPORT (STATS,
SERVICEQUEUE,
MEAN INTER ARRIVAL_TIME,
MEAN_SERVICE_TIME,

131

- ..- .",......

RANDOM NUMBER);

when others >

GENERATEREPORT (STATS,
SERVICEQUEUE,
MEAN INTER ARRIVALTIME,
MEAN-SERVICE TIME,

RANDOM NUMBER);

end TRUCKSIMULATION;

1

)"132

APPENDIX R

SOURCE LISTING
TRUCK SIMULATION ROUTINES PACKAGE

ADA REDESIGN
VADS COMPILER RELEASE V04.06

withn TEXTIO;

with LOG; use LOG;

package SIMULATION_ROUTINES is

package FLOAT IO is new TEXTIO.FLOATIO (FLOAT);
package INTEGERIO is new TEXTIO.INTEGERIO (INTEGER);

type SEEDARRAY is array (INTEGER range 1..10) of FLOAT;

type RANDOM NUMBER RECORD is record
NUMBER: FLOAT;
SIEDS SEEDARRAY (= > 567.0,

2 => 459.0,
3 => 561.0,
4 => 663.0,
5 => 613.0,
6 => 867.0,
7 => 969.0,
8 => 1071.0,
9 => 1173.0,

10 => 2717.0);
DSEED FLOAT;
COUNT : INTEGER;

end record;

type SIMPLEARRAY is
array (INTEGER range 1..100) of FLOAT;

type STATISTICS is record
CLOCK : FLOAT;
NEXT ARRIVAL : FLOAT;
NEXTDEPARTURE : FLOAT;
TIME LASTEVENT : FLOAT;
SERVER BUSY TIME : FLOAT;
TOTAL TIME IN SYSTEM : FLOAT;
TOTAL-ARRIVALS : INTEGER;
TOTALDEPARTURES : INTEGER;
MAX_QLENGTH : INTEGER;
FOURHOURSINSYSTEM : INTEGER;

133

.......

REPETITION INTEGER 0;
end record;

type QUEUE is record
ELEMENT : SIMPLE ARRAY;
LENGTH : INTEGER 0;

IS IDLE : BOOLEAN := TRUE;
end record;

procedure GENERATE ARRIVAL
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICE TIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure GENERATE DEPARTURE
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN SERVICE TIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure INITIALIZE
(STATS : in out STATISTICS;
SERVICEQUEUE : in out QUEUE;
MEAN INTER ARRIVALTIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure GENERATEREPORT
(STATS : in out STATISTICS:
SERVICEQUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICE TIME : in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD);

procedure RAN
(RANDOMNUMBER in out RANDOMNUMBERRECORD);

end SIMULATIONROUTINES;

package body SIMULATION ROUTINES is

procedure GENERATE ARRIVAL
(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICE TIME in FLOAT;
RANDOMNUMBER in out

134

RANDOMNUMBER RECORD) is

SERVICETIME :FLOAT;
INTERARRIVALTIME :FLOAT;

begin
STATS.CLOCK STATS.NE2(TARRIVAL;
SERVICEQUEUE.LENGTd SERVICE QUEfUE.LENGTH + 1;
SERVICEQUEUE.ELEMENT (SERVICEQUEUE.LENGTH)

:=ST AT S.CLOCK;
if SERVICE QUEtJE.ISIDLE then

SERVICEQUEEJE.ISIDLE FALSE;
RAN (RANDO-0MTNUMBE R)MENSRIETE
SERVICETIME ENSRIETM

*(- LN
(RANDOMNUMBER.NUMBER));

STATS .NEXT DEPARTURE :=STATS.CLOCK

+ SERVICETIME;
else

STATS.SERVERBUSYTIME : STATS.SERVERBUSYTIME
+ (STATS.CLOCK
- STATS.TIMELASTEVENT);

end if;
STATS.TIME LASTEVENT :STATS.CLOCK;
STATS.ToTrAL ARRIVALS STATS.TOTALARRIVALS + 1;
if SERVICEQUEUE.LENGTH > STATS.MAXQLENGTH tnen

STATS.MAXQLENGTH SERVICEQUEfUEf.LENGTH;
end if;
RAN (RANDOM NUMBER);
INTERARRIVALTIME MEAN INTERARRIVALTIME

* (-LN (RANDOMNUMBER.NUMBER));
STATS.NEXTARRIVAL STATS.CLOCK

+ INTERARRIVALTIME;
end GENERATEARRIVAL;

procedure GENERATE DEPARTURE
(S-TATS :in out STATISTICS;
SERVICE QUEUE :in out QUEUE;
MEAN SERVICE TIME :in FLOAT;
RANDOMNUMBER : in out

RANDOMNUMBERRECORD) is

TIME -IN SYSTEMTHISDEPARTURE :FLOATr;
SERVICETIME :FLOAT;

begin
STATS.CLOCK STATS.NEXTDEPARTURE;
STATS.SERVERBUSYTIME STATS.SERVERBUSYTIME

+ (STATS.CLOCK
- STATS.TIMELASTEVENT);

STATS.TIMELASTEVENT STATS.CLOCK

135

rli4EINSYSTEMTHISDEPARTURE STATS.CLOCK
- SERVICEQUEUE.ELEMENT(l);

STATS.TOTALTIMEINSYSTEM
STATS.TOTAL TIME IN SYSTEM

+ TIME IN SYSTEM THIS-DEPARTURE;
STATS.TOTAL DEPARTURES STATS.TOTALDEPARTURES

+ 1;

if TIME IN SYSTEM THIS DEPARTURE > 4.0 then
STATS.FOUR HOURSIN-SYSTEM

:= STATS.FOURHOURSINSYSTEM + 1;
end if;

if SERVICEQUEUE.LENGTH - 1 = 0 then -- if queue
-- will be

-- empty
-- after this
-- departure

SERVICE QUEUE.LENGTH 0;
SERVICEQUEUE.ISIDLE TRUE;
STATS.NEXTDEPARTURE := l.0e30;

else
for INDEX in 1..SERVICE QUEUE.LENGTH - 1 loop

SERVICEQUEUE.ELEMENT (INDEX)
= SERVICEQUEUE.ELEMENT(INDEX + 1);

end loop;
SERVICEQUEUE.LENGTH SERVICEQUEUE.LENGTH - 1;

RAN (RANDOM NUMBER);
SERVICETIME = MEANSERVICETIME

* (-LN

(RANDOM NUMBER.NUMBER));
STATS.NEXTDEPARTURE STATS.CLOCK

+ SERVICETIME;

end if;
end GENERATEDEPARTURE;

procedure INITIALIZE
(STATS : in out

STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEANINTERARRIVALTIME : in FLOAT;

RANDOM NUMBER : in out
RANDOMNUMBERRECORD) is

ARRIJAL TIME FLOAT;
begin

STATS.REPETITION STATS.REPETITION + 1;
RANDOMNUMBER.DSEED RANDOM NUMBER.SEEDS

(STATS.REPETITION);

RANDOM NUMBER.COUNT 0;
RAN (RANDOMNUMBER);
ARRIVALTIME MEANINTERARRIVALTIME

136

.... --.- *..*. .. . * " ..".-,"- ""-*".. -". "- - L . . ""r'

* (-LN (RANDOMNUMBER.NUMBER));

STATS.CLOCK * 0.0;
STATS.TIME LAST EVENT 0.0;
STATS.SERVER BUSY TIME := 0.0;
STATS.TOTAL TIME IN SYSTEM : 0.0;

STATS.TOTAL ARRIVALS : 0 ;
STATS.TOTAL DEPARTURES : 0 ;
STATS.MAX_Q LENGTH 0
STATS.FOUR HOURS IN SYSTEM : 0

STATS.NEXTARRIVAL : STATS.CLOCK
+ ARRIVALTIME;

STATS.NEXT DEPARTURE 1.0e30;
SERVICEQUEUE.LENGTH 0;
SERVICE QUEUE.ISIDLE TRUE;

end INITIALIZE;

procedure GENERATE REPORT
(STATS : in out

STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN INTER ARRIVAL TIME : in FLOAT;
MEAN SERVICE TIME : in FLOAT;
RANDOM NUMBER : in out

RANDOMNUMBERRECORD) is
TEMP : FLOAT;

begin
NEW LINE;
NEW LINE;
PUT ("RANDOM NUMBER GENERATOR SEED");
PUT (RANDOMNUMBER.SEEDS (STATS.REPETITION));
NEW LINE;
PUT ("MEAN INTERARRIVAL TIME =

PUT (MEANINTERARRIVALTIME);
NEW LINE;
PUT ("MEAN SERVICE TIME =

PUT (MEANSERVICE_TIME) ;
NEW LINE;
NEW LINE;
PUT ("PROPORTION OF TIME DOCK CREW IS BUSY = n);
TEMP := STATS.SERVERBUSYTIME / STATS.CLOCK;
PUT (TEMP);
NEW LINE;
NE4 LINE;
PUT ("MAXIMUM LENGTH OF WAITING LINE =
PUT (STATS.MAXQ_LENGTH);
NEW LINE;
NEW LINE;
PUT ("AVERAGE TIME TO TRANSIT SYSTEM =
TEMP := STATS.TOTALTIME IN SYSTEM

/ FLOAT(STATS.TOTAL_DEPARTURES);
PUT (TEMP);

137

NEW LINE;
NEW LINE;
PUT ("PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS

="?);

TEMP FLOAT (STATS.FOURHOURSINSYSTEM)

/ FLOAT (STATS.TOTAL DEPARTURES);
PUT (UEMP);
NEW LINE;
NEW LINE;
PUT ("SIMULATION RUN LENGTH -

PUT (STATS.CLOCK);
PUT (" HOURS") ;

NEW LINE;
NEW LINE;
PUT ("NUMBER OF TRUCKS UNLOADED =

PUT (STATS.TOTALDEPARTURES);
NEW LINE;
NEW LINE;
PUT ("NUMBER OF RANDOM NUMBERS USED =

POT (RANDOMNUMBER.COUNT);
NEW LINE;

P NEW LINE;
PUT ("AVERAGE NUMBER OF UNITS IN SYS. =

TEAP := STATS.TOTALTIMEIN SYSTEM / STATS.CLOCK;
PUT (TEMP);
NEWLINE;
NEW LINE;
PUT ("TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)

") ;
PUT (STATS.TOTALTIMEINSYSTEM);
NEW LINE;
NEW LINE;
PUT ("AVERAGE NUMBER OF ARRIVALS PER HR =
TEMP := FLOAT (STATS.TOTALARRIVALS) / STATS.CLOCK;
PUT (TEMP);
NEW LINE;
NEW LINE;

end GENERATEREPORT;

procedure RAN (RANDOMNUMBER in out
RANDOMNUMBER RECORD) is

type DIGITS_6 is digits 6;

trmpint : integer;
tmpreal : DIGITS_6;
TEMP : DIGITS 6;
SEED : DIGITS 6;

begin
SEED : DIGITS_6 (RANDOMNUMBER.DSEED);

138

" .'.......................................

tmpreal :SEED *3.141592;

tmpint integer(trnpreal);
TEMP :=tmpreal - DIGITS_6 (tmpint);

if TEMP >= 0.5 then
tinpint :tmpint + 1;
tnpreal :=t~npreal - DIGITS 6 (tmpirlt);

else
tmpreal :=TEMP;

end if;

if tmpreal < 0.0 then
tinpreal := -t~noreal;

end if;
tmpreal := 2.0 * tmpreal;
RANDO)M NUMBER.NtJMBER :=FLOAT (tinpreal);
RANDOM NUMBER.DSEED FLOAT (tmpreal);
RANDOMNUM8ER.COUNT :RANDOMNUMSER.COUNT + 1;

end RAN;
end SIMULATIONROUTINES;

139

APPENDIX S

SOURCE LISTING
LIBRARY MAINTENANCE PROGRAM

ORIGINAL PASCAL VERSION

program liblist(input, output, libfile);

type chararr- array[l..20] of char;
libptr = ^liblist;

liblist =
record

NEXT: libptr;
NAME: chararr;

AUTHOR: chararr;
CALLNO: integer;

end; (*RECORD*)

var FROUT,
BOOK: libptr;

INCALLNO,
INDX: integer;

SELECTION: char;
libfile: text;

procedure insert(BOOK: libptr) ;

var P,Q: libptr;

begin (*insert*)
if FRONT = nil then

FRONT : BOOK
else

if FRONT ^ .CALLNO>BOOK^ .CALLNO then
begin(*INSERT AT FRONT*)

BOOK^.NEXT := FRONT;
FRONT := BOOK

end
else

begin (*INSERT IN MIDDLE*)

P : FRONT;
Q FRONT;
while(P^.NEXT<>nil) and (P = Q) do

beg in (*TRAVERSE*)
P := P%.NEXT;
if P^.CALLNO>BOOK .CALLNO then

begin (*ATTACH*)
Q^.NEXT BOOK;

140

BOOK.NEXT : P
,and

else
Q := P

end; (*TRAVERSE*)
if(P^.NEXT = nil) and

(P .CALLNO<BOOK^ .CALLNO) then
(*ATTACH AT END*)
P^.NEXT := BOOK

end (*INSERT IN MIDDLE*)
end; (*INSERT*)

procedure delete(CALLNO: integer);

var P,Q: libptr;
DELETED: boolean;

begin (*DELETE*)
DELETED : FALSE;
if FRONT = nil then

writeln('NOTHING TO DELETE.')
else

if FRONT^.CALLNO = CALLNO then
begin (*DELETE FIRST ELEMENT*)

FRONT := FRONT^.NEXT;
DELETED := TRUE

end (*DELETE FIRST ELEMENT*)
else

begin (*SEARCH LIST*)
P : FRONT;
Q : FRONT;
while (PX.NEXT<>nil) and (P = Q) and

(P^ .CALLNO<CALLNO) and
(DELETED=FALSE) do

begin (*TRAVERSE and DELETE*)
P := P^.NEXT;
if P^ .CALLNO = CALLNO then

begin (*DELETE BOOK*)
Q.NEXT : P .NEXT;
DELETED : TRUE

end (*DELETE BOOK*)
else

Q := P
end; (*TRAVERSE and DELETE*)

if DELETED = FALSE then
writeln('NO SUCH BOOK');
wr iteln

end (*SEARCH LIST*)
end; (*DELETE*)

procedure readfile;

141

- .-. -. X-....,. t.. P" -"s - . - ...-." . . .• • -.- •...•, -

var INDX: integer;
BOOK: iibptr;

begin (*readfiie*)
reset(libfile);

while not eof(iibfiie) do
begin (*READ BOOK*)

new(BOOK);
for INDX := 1 to 20 do

read(libfiie, BOOK^.NAME[INDXI);
readin(libfile);
for INDX := 1 to 20 do

read(libfile, BOOK^.AUTHOR[INDX]);
readln (libf le) ;
readin(iibfile, BOOK^.CALLNO);
insert (BOOK)

end (*READ BOOK*)
end; (*readE'ILE*)

procedure writefile;

var P: libptr;
INDX: integer;

begin (*writefile*)
rewrite(libfile);
P := FRONT;
while P<>nil do

begin (*write BOOK*)
for INDX := 1 to 20 do

write(libfile, P^.NAME[INDX]);
writeln(libfilel.;
for INDX := 1 t o 20 do

write(.libfiie, P^.AUTHOR[INDX1);
writeln(libfile) ;
writeln(libfile, P%.CALLNO);
P := P^.NEXT

end (*iqRITE BOOK*)
end; (*writefiie*)

procedure viewfile;

var INDX: integer;
NAME, AUTHOR: chararr;
CALLNO: integer;

begin (*vlewfiie*)
reset(libfiie);
while not eof(iibfile) do

begin (*view iibfile*)
for INDX :=1 to 20 do

142

begin (*loop*)
read(libfile,NAME[INDXI);
wr ite (NAME [INDXJ)

end;

wr iteiri;
for IND(:= to 20 do

begin (*lo0p*)
read(libfile,AUTHOR[INDX]);
write (AUT~iOR[INDX I);

end;
readln(libfile);
wr iteln;

readln(libfile,CALLNO);
writeln(CALLNO) ;

end; (*view libfile*)
writein;
writeln('END OF LIBRARY FILE');

end; (*viewfile*)

begin (*liblist*)
FRONT := nil;
readfile;
writein ('WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR

VIEW THE FILE?');
write ('TYPE I OR D OR V:')
readln (SELECTION);
wr iteln;
while SELECTION<>F' do

begin (*UPDATE LIST*)
if SELECTION = 'iT' then

begin (*READ, INSERT BOOK*)
new(BOOK);
writeln('TY PE -THE NAME OF THE BOOK:')
for INDX := I to 20 do

if not eoln then
read(BOOK^.NAM1E[INDX])

else
BOOK^.NAME[INDX]

readl1n;
wr iteln;
writeln('TYPE THE NAME OF THE AUTHOR:');
for INDX := 1 to 20 do

if not eoln then
read(BOOK^.AUTHOR[INDX])

else
BOOKA .AUTHOR[INDX]:'

readln;
wr iteln;
writeln ('TYPE THE CALL NUMBER OF THE

143

BOOK:'
readin (BOOK .CALLNO);
wr iteln;
insert (BOOK);

end; (*READ, INSERT BOOK*)

if SELECTION -'Dn then
begin (*GET NUMBER, DELETE BOOK(*)

write('TYPE TH~E CALL NUMBER OF THE BOOK:');

readln(INCALLNO);
wir iteiri;
delete(INCALLNO);

end; (*G3ET NUMBER, DELETE BOOK*)

if SELECTION ='V' then
oegin (*TO VIEW FILE*)

writefile;
viewfile;
wr itein;

end; (*TO VIE4J FILE*)

write('TYPE I TO INSERT, D TO DELETE, OR V TO VIEW~

FILE, OR F -TO FINISH:');
readin (SELECTION);
writein

end; (*UPDATFE LIs'r*)
4ritafile;
writaln('LIBRARY FILE IS NOW UPDATED');

writein; writein
end. (*libljst*)

144

APPENDIX T

SOURCE LISTING
LIBRARY MAINTENANCE PROGRAM
ADA LINE-BY-LINE TRANSLATION
VADS COMPILER RELEASE V04.06

-LINE BY LI'7E TRANSLATION OF THE LIBLIST PASCAL PROGRAM4
-- INTO ADA.

with text-io; use text-io;

procedure lib is

package int-io is new integer_io(integer);
use mnt-io;

type chararr is array (integer range 1 .. 20) of
character;

type liblist;
type libptr is access liblist;

type liblist is
record

NEXT :libptr;
NAME :chararr;

AUTHOR : chararr;
CALLNO : integer;

end record;

FRONT, BOOK :libptr;
INCALLNO : integer;
SELECTION : character;

libfile : text-io.file_type;

procedure insert (BOOK :libptr) is

P,Q :libptr;

begin

145

if FRONT = null then
FRONT : BOOK;

else

if FRONT.CALLNO > BOOK.CALLNO then

BOOK.NEXT := FRONT;
FRONT :- BOOK;

else

P : FRONT;
S:= FRONT;

while (P.NEXT /- null) and (P = Q) loop
P := P.NEXT;
if P.CALLNO > BOOK.CALLNO then
Q.NEXT := BOOK;
BOOK.NEXT := P;

else

Q := P;
end if;

end loop;
if ((P.NEXT = null) and (P.CALLNO < BOOK.CALLNO)) then

P.NEXT : BOOK;
end if;

end if;
end if;

end insert;

procedure delete (CALLNO : in INTEGER) is

P, Q : libptr;

DELETED : BOOLEAN := FALSE;

begin

if FRONT = null then
put("NOTHING TO DELETE");
new-line;

else

if FRONT.CALLNO = CALLNO then
FRONT := FRONT.NEXT;
DELETED : TRUE;

else

146

• , , . . . , , . . , . , • _ -

P :zFRONT;
Q :FRONT;
while (P.NEXT /= null) and (P =Q) and

(P.CALLNO<CALLNO) and (DELETED =FALSE) loop
P := P.NEXT;
if P.CALLNO = CALLNO then
Q.NEX P.NEXT;
DELETED :TRUE;

else

Q := P;
end if;

end loop;

if DELETED = FALSE then
put("NO SUCH BOOK");
new line;

end i-f;

end if;
end if;

end delete;

--

procedure readfile is

BOOK :libptr;

begin

reset(libfile);

while not ENDOFFILE(libfile) loop
BOOK :- new liblist;
for I IN I .. 20 loop

get (libfile, BOOK.NALIE(I));
end loop;
skip-line(libfile);

for I in 1 .. 20 loop
get (libfile, BOOK.AUTHOR(I));

end loop;
skip-line(libfile);

get (libfile, BOOK.CALLNO);
skip line(libfile) ;

insert (BOOK) ;
end loop;

147

end readfiie;

procedure writefile is

P :libotr;

beg in

create(liofile, out file,"libfile");
P := FRONT;
wniile (P /= null) loop

for I in 1 .. 20 loop

end loop;

new-line(libfile);

for I in 1 .. 20 loop
put(libfile, P.AUTHOR(I));

end loop;

new-1line (libf ile);

put(liofile, P.CALLNO); new line(libfile);

P :=P.NEXT;
end loop;
close (li'oEile);

end writefile;

procedure view-libfile is

NAME :chararr;
AUTHOR :chararr;
CALLINO :integer;

begin

reset (libf ile)

while not ENDOFFILE(libfile) loop

for I in 1 .. 20 loop
get(libfile,NAME(I));
put (NAME (I))

end loop;
skip-line(libfile);

148

new-line;

for I in 1 .. 20 loop
get(libfile,AUTHOR(I));
put(AUTHOR(I));

end loop;
skipline(libfile);
new-line;

get(libfile,CALLNO) ;
put (CALLNO) ;
skipline(libfile);
new-line;

end loop;

new line;
put("END OF LIBRARY FILE");
new line;
new-line;

end view libfile;

-- MA N PROGRAM BODY

begin

open(linfile, in file,"libfile");
FRONT := null;
readfile;

put("WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR VIEW THE
FILE?"); new line;

put("TYPE I OR D OR \7: ")
3et (SELECTION)
skip_line;

wnile SELECTION /= 'F' loop

if SELECTION = 'I' then
OOK := new liblist;

puc(i"rYPE THE NAME OF THE BOOK: ");
new-line;

for I in 1 .. 20 loop
if not END OF LINE then

get(BOOK.NAME(I));

else

149

BOOK. NAME (I) '

end if;
end loop;
new line;
skip-line;

put("TYPE THE NAME OF THE AUTHOR: "

new line;
for I in 1 .. 20 loop

if not ENDOFLINE then
get (BOOK .AUTHOR(I)) ;

else

BOOK.AtJTHOR(I) :
end if;

end loop;
new-line;

put("TYPE THE CALLNO OF THE BOOK:)

new line;
4 get(BOOK .CALLNO);

new-line;

insert (BOOK)

elsif SELECTION = ID' then
put("TYPE ['HE CALL NUMBER OF THE BOOK:");
get(INCALLNO);
new-line;

delete (INCALLNO);
elsif SELECTION ='V' then
close (1libf ile)
wr itefile;
open(libfile, in-file, "libfile");
view libfile;
new line;

end if;
put("TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO

FINISH: ");
get (SELECTION);
new line;
skip-line;
end loop;
close(libfile);
writefile;
put("LIBRARY FILE IS NOW UPDATED");
new line; new line;
end lib;

150

APPENDIX U

SOURCE LISTING

LIBRARY MAINTENANCE MAIN PROGRAM
ADA REDESIGN

VADS COMPILER RELEASE V04.06

with TEXT IO; use TEXTIO;
with LIB LIST; use LIBLIST;
procedure LIBMAIN is

ACTION : CHARACTER;
LIB FILE LIB IO.FILE TYPE;

begin
LIBIO.OPEN (FILE => LIBFILE,

MODE => LIB IO.INOUTFILE,
NAME => "lib file.dat");

NEW LINE;
PUT ("LIBRARY MAINTENANCE PROGRAM");
NEW LINE;
NEW LINE;
loop

NEW LINE;
PUT ("What do you want to do?"); NEWLINE;

PUT (" 'I' = insert a book"); NEW LINE;
PUT (" '0' = delete a book"); NEW LINE;

PUT (" 'P' = print library list"); NEWLINE;
PUT (" 'Q' = quit"); NEWLINE;
GET (ACTION);
exit when ACTION =

case ACTION is
when 'I' => INSERT BOOK (LIB_FILE);
when 'D' => DELETE BOOK (LIBFILE);
when 'P' => PRINT 8OOK LIST (LIBFILE);

when others => PUTLINE ("INVALID RESPONSE");
end case;

end loop;
LIB IO.CLOSE (FILE => LIBFILE);

exception
when NUMERIC ERROR =>

LIB IO.CLOSE (FILE => LIB FILE);
PUT ("FILE CLOSED")
raise;

when others =>
LIB IO.CLOSE (FILE => LIBFILE);
PUT ("FILE CLOSED")
raise;

end LIBMAIN;

131

-' ' --- '' ,, .A "..; ' ' , a . -'', ..
-

" - - ' -, - " - . " - "''' " ' ,"" " " ''" . q'

APPENDIX V

SOURCE LISTING

LIBRARY MAINTENANCE ROUTINES PACKAGE
ADA REDESIGN

VADS COMPILER RELEASE V04.06

with DIRECTIO;
with TEXT 10; use TEXTIO;
package LIBLIST is

type LIBRARY BOOK is record
NEXT BOOK : POSITIVE;
TITLE : STRING (1..20);
AUf.iOR : STRING (1..20);
CALLNUMBER : POSITIVE;

end record;

package LIB IO is new DIRECTIO (ELEMENTTYPE >
LIBRARY BOOK);

package INTIO is new INTEGER 10 (POSITIVE);
use LIBIO;
use INTIO;

procedure INSERT BOOK (LIB FILE : in LIB IO.FILE TYPE);
procedure DELETE BOOK (L13 _FILE : in LIB IO.FILETYPE);
procedure PRINTBOOKLIST (LIBFILE : in

LIBIO.FILETYPE);

end LIBLIST;

package body LIBLIST is

procedure INSERTBOOK (LIBFILE : in LIBIO.FILETYPE) is

NEW BOOK : LIBRARY BOOK;
THIS BOOK : LIBRARY-BOOK;
PREV BOOK : LIBRARYBOOK;
PREV_BOOKINDEX : LIBIO.POSITIVECOUNT;

begin
NEW LINE;
PUT ("Enter book title");
NEW LINE;
SKIP LINE;
for I in NEWBOOK.TITLE'range loop

152

if not END OF LINE then
GET (NEW_BOOK.TITLE(I));

else
NEWBOOK.TITLE(I) :- ' '

end if;
end loop;
NEW LINE;
PUT ("Enter author name");

NEW LINE;
SKIP LINE;
for I in NEW BOOK.AUTHOR' range loop

if not END OF LINE then
GET (NEW_BOOK.AUTHOR(I));

else
NE, BOOK.AUTHOR(I) '

end if;
end loop;
NEW LINE;
PUT ("Enter call number");
NEW LINE;
GET (NEW BOOK.CALLNUMBER);
NEW LINE;
READ (FILE => LIB FILE,

ITEM > THISBOOK,
FROM => 1);

if THIS BOOK.NEXT BOOK - POSITIVE'last then

NEW _OOK.LEXT BOOK :- POSITIVE'last;
THIS BOOK.NEXT_BOOK : POSITIVE(SIZE (LIBFILE)

+ 1);
WRITE (FILE => LIBFILE,

ITEM => NEWBOOK,
TO ->
LIB IO.POSITIVE COUNT(THISBOOK.NEXTBOOK));

WRITE (FILE => LIBFILE,
ITEM => THISBOOK,
TO =>);

else
PREV BOOK INDEX := 1;
PREVBOOK THISBOOK;
loop

READ (FILE => LIB FILE,

ITEM => THISBOOK,
FROM =>

LIB IO.POSITIVE COUNT

(THIS BOOK.NEXT B-OOK));
if THISBOOK.CALLNUMBER > NEW BOOK.CALL 47173ER

then

NEW BOOK.NEXT BOOK PREV BOOK.NEXT BOOK;
PREVBOOK.NEXT BOOK :-POSITIVE(SIZE(LIBFILE)

+ 1);
WRITE (FILE -> LIS FILE,

ITEM -> PREVBOOK,

153

.

TO >PREVBOOKINDEX);

WJRITE (FILE => LISTILE,
ITEM => NEWBOOK,
TO =>

LIBIO.POSITIVS COUNT
(PREVBOOK.NEXTBOOK));

exit;
else

if THIS BOOK.NEXTBOOK =POSITIVE'last then
NEW _BOOK.NEXT BdOOK POSITIVE' last;
THISBOOK.NEXY'_BOOK :=POSITIVE (SIZE

(bIBFILE) + 1);
WRIT (FILE => LISFILE,

ITEM => THIS BOOK,
TO => INDEX (LIBFILE) -1) ;

WJRITE (FILE => LIBFILE,
ITEM => NEWBOOK,
TO =>

LIBIO.POSITIVE COUNT
(THISBOOK.NEXTBOOK));

exit;
S else

PREVBOOKINDEX :INDEX (LIBFILE) -1;

PREVBOOK THISBOOK;
end if;

end if;
end loop;

end if;
end INSERTBOOK;

procedure DELETEBOOK (LIB FILE :in LIBIO.FILETYPE) is
DELETED BOOK .LIBRARYBOOK;

THIS BOOK .LIBRARYBOOK;

PREV BOOK :LIBRARY BOOK;
PREVBOOKINDEX :LIBIO.POSITIVECOUNT;
BOOKNOl'_FOUND : 3JEAN :=TRUE;

begin
NEW LINE;
PUT ("Enter call number of book to be deleted.") ;
NEW LINE;
GET (DELETEDBOOK.CALLNUMBER);
READ (FILE => LIB FILE,

ITEM => THIS_ BOOK,
FROM => 1);

PREVBOOKINDEX :1;

PREVBOOK THIS BOOK;
while THIS BOOK.NEXTBOOK /= POSITIVE'last loop

READ (FILE => LIBFILE,
ITEM => THISBOOK,

D FROM => LIB £o.POSITIVE COUNT

154

(THIS BOOK.NEXT BOOK));
if THISBOOK.CALLNUMBER = DELETEDBOOK.CALLNUMBER

then
if THIS BOOK.NEXT BOOK = POSITIVE'last then

PREVBOOK.NEXTBOOK := POSITIVE'last;
else

PREV BOOK.NEXTBOOK : THISBOOK.NEXTBOOK;
end if;
WRITE (FILE => LIB FILE,

ITEM => PREV BOOK,
TO => PREVBOOK INDEX);

BOOK NOTFOUND := FALSE;
exit;

end if;
PREVBOOKINDEX : INDEX (LIB_FILE) - 1;
PREV BOOK = THISBOOK;

end loop;
if BOOK NOT FOUND then

NEW LINE;
PUT ("Book Not Found");
NEW LINE;

end if;
end DELETEBOOK;

procedure PRINTBOOKLIST (LIB_FILE : in
51BIO.FILETYPE) is

BOOK : LIBRARYBOOK;
begin

READ (FILE => LIBFILE,
ITEM => BOOK,
FROM => 1);

while BOOK.NEXT_BOOK /= INTEGER' last loop

READ (FILE => LIB FILE,
ITEM => BOOK,
FROM => LIB IO.POSITIVE COUNT

(BOOK.NEXTBOOK));
NEW LINE;
PUT (BOOK.CALLNUMBER);
PUT (" ");
PUT (BOOK.TITLE);
PUT (" by ");
PUT (BOOK.AUTHOR);

end loop;
NEW LINE;

end PRINT BOOKLIST;
end LIB_LIST;

155

APPENDIX W

SOURCE LISTING
LIBRARY MAINTENANCE DATA FILE CREATION PROGRAM

ADA REDESIGN
VADS COMPILER RELEASE V04.06

with LIB_-LIST; use LISLIST;
procedure MAKEFILE is

BOOK : LIBRARY_ BOOK;
LIB FILE : LIB IO."FILE TYPE;

begin
LIBIO.CREATE (FILE => LIB FILE,

MODE => LIB IO.INOJTFILE,
NAME => "libS-file.dat');

BOOK.NEXT BOOK :2;
BOOK.AUTHOR := POINTS TO START OF ;

BOOK.TITLE :"CHAIN
BOOK.CAL1LNUMBER :=POSITIVE'last;
LIBIO.WRITE (FILE => LIBFILE,

ITEM => BOOK,
TO => 1);

BOOK.NEXTBOOK :=POSITIVE'last;

BOOK.AUTHOR : TOLSTOY, COUNT LEO "

BOOK.TITLE :"ANNA KARENINA
BOOK.CALL NUMBER 10
LIBIO.WRITE (FILE => LIBFILE,

ITEM => BOOK,
TO => 2);

LIS IO.CLOSE (FILE => LIB FILE);
end MAKEFILE;

156

....

APPENDIX X

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

FORTRAN 4 VERSION

Trapezoidal integration with end correction

1 4.44444
2 1.70535
4 2.13427
8 2.19111

16 2.19675
32 2.19719
64 2.19722

123 2.19723

Area = 2.19723

157

. 2.

APPENDIX Y

OUTPUT LISTING

TRAPEZOIDAL INTEGRArION PROGRAM

ADA LINE-BY-LINE TRANSLATIOLN
TELESOFT-ADA COMPILER VERSION 1.5

Trapezoidal integration with end correction

1 4.4444446E+00
2 1.7053498E+00
4 2.1342740E+00
8 2.1911082E+00

16 2.1967544E+00
32 2.1971931E+00
64 2.1972231E+00

128 2.1972255E+0

Area = 2.1972255E+00

158

........................:

APPENDIX Z

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ADA LINE-BY-LDIE TRANSLATION USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.06

Trapezoidal integration with end correction

1 4.44444444E+00-
2 1.70534979E+00
4 2.13427396E+00
8 2.19110817E+00

16 2.19675417E-00
32 2.19719294E+00
64 2.19722256E+-00

128 2.19722445E+I00

Area =2.19722445E+t00

159

APPENDIX AA

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ADA LINE-BY(-LINE TRANSLATION USING SIX DIGETr PRZcisIOr,,
VADS COMPILER RELEASE V04.06

Trapezoidal integration with- end correction

1 4.44444E+t00
2 1.70535E+00
4 2.13427E+00
8 2.19111E+i00

16 2.19675E+i00
32 2.19719E+00
64 2.19722E+00

*128 2.19723E+00

Area =2.19723E+00

160

APPENDIX B3

OUTrPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

ADA REDE~SIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE v04.06

-TRAPEZOIDAL INTEGRATION
I 4.44444444E+00
2 1.70534979E+00)
4 2.13427396E+00
8 2.19110317E+00

16 2.19675417E+00
32 2.19719294E+hJ
64 2.19722256E+00

12~3 2.19722445E+00
AREA =2.19722445E+00

161

APPENDIX CC

OUTPUT LIS' - NG
TRAPEZOIDAL INTEGRATION PROGRAM

ADA REDESIGN USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V04.06

TRAPEZOIDAL~ INTEGRATION
1 4.44444E+00
2 1.70535E+003
4 2.13427E+00
8 2.19111E+00

16 2.19675E+00
32 2.19719E+00
64 2.19722E+00
128 2.19723E+00

6 AREA =2.19723E+00

162

.
.

APPENDIX DD

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

FORTRAN 4 VERSION USING 3500 ELEMENT ARRAY

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.56700000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.73

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME TO TRANSIT SYS. 0.80 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.01

SIMULATION RUN LENGTH 509.36 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3007

AVERAGE NUMBER OF UNITS IN SYS. = 2.370

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1207.228
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.45900000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

163

.- . " . . • ,, " ".-. -. - -.. -. - . . . -.. .- .. . -. - - . . . -. 7 .-.2 - ...- - .. -. -' .'- '~

PROPORTION OF TIME DOCK CREW IS BUSY = 0.73

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 0.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 533.25 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS. = 1.985

tOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1058.522
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8167

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.56100000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYS. 0.79 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 529.22 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3008

AVERAGE NUMBER OF UNITS IN SYS. = 2.253

164

.. *

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1192.372
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.3457

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.66300000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 0.69 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 534.84 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVZRAGE NUMBER OF UNITS IN SYS.= 1.937

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1035.763
(rRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8083

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.61300000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

165

PROPORTION OF TIME DOCK CREW IS BUSY = 0.74

AA.XIUM LENGTH OF WAITING LINE = 10

AJERAGE TIME TO TRANSIT SYS. 0.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 530.41 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS. = 1.996

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1058.438
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8299

TRUCK QUEUING PROBLEA:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.86700000d+a3
'ti]X- ARR[IAL TIME(MIAT) = 0.3333
AEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIAE DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE 10

AVERAGE TIME TO TRANSIT SYS. 0.70 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

S
T MULATION RUN LENGTH 525.60 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER .F UNITS IN SYS.= 1.996

166

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1049.182
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8577

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.96900000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 0.80 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.00

SIMULATION RUN LENGTH 525.89 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 2.280

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1198.781
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8542

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.10710000d+04
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

167

PROPORTION OF TIME DOCK CREW IS BUSY = 0.71

MAXIMUM LENGTH OF WAITING LINE = 10

. AVERAGE TIME TO TRANSIT SYS. 0.69 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 530.05 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 1.957

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1037.296
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8318

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.11730000d+04
AEAN ARRIVAL TIME(MIAT) = 0.3333
AEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE 12

AVERA3E TIME TO TRANSIT SYS. 0.81 HOURS..

PROPORTION OF TRUCKS rAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 531.09 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 2.274

168

AA-' -' i > -L -i } .i ' -' -- ii - .". - . . - ." . -" - -" . - .".". . " ". . '. -. -.

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1207.853
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8282

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.27170000d+04
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 0.75 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 521.11 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3011

AVERAGE NUMBER OF UNITS IN SYS.= 2.169

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1130.351
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8958

169

... .. < V i . . I . V . <..< < { < . .< , i. . .

APPENDIX EE

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

FORTRAN 4 VERSION WITH 6500 ELEMENT ARRAY

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

OSEED = 0.56700000d+03
MEAN ARRIVkL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.71

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TI4E TO TRANSIT SYS. 0.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00

SIMULATION RUN LENGTH 1053.03 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NU14BER OF RANDOM NUMBERS USED = 6006

AVERAGE NUMBER OF UNITS IN SYS.= 2.174

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2289.684
(TRUC9(S PER HR)

AVERA3E NUMBER OF ARRIVALS PER HR= 2.8527

TRUCK QUEUING PROBLE4:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.45900000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333

170

MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 0.70 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1076.16 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 1.946

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2094.400

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.7905

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SSRVER QUEUE.

DSEED = 0.56100000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTIDN OF TIME DOCK CREW IS BUSY = 0.70

MAXIMUM LENGTH OF 4AITING LINE = 13

AVERAGE TIME TO TRANSIT SYS. 0.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1083.88 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

171

. . . .- - . - - --- -- .- -, -- -- . -. - . . - , - . . :. :

AVERAGE NUMBER OF UNITS IN SYS.= 2.109

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2286.446
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.7706

TRUCK QUEUING PROBLEM:ANUERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.66300000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 0.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1068.28 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 1.995

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2131.000
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8111

TRUCK)UEUING PROBLEM:kNDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.61300000d+03

172

-" - ". =.. .'. ".". . ".' . .'.'.'. . .'..," .. ". .'. ". " .' -- ',-

MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.72

MAXIMUM LENGTH IF vlAITING LINE = 10

AVERAGE TI4E TO TRANSIT SYS. 0.70 HOURS..

PROPORTION OF TRUCK(S TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1071.14 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6002

AVERAGE NUMBER OF UNITS IN SYS.= 1.954

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2093.365
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8017

rRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.86700000d+03
MEAN ARRIVAL TIME(MIAT) = 0.3333
EAN SERVICE %IME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.70

MAAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIA4E TO TRANSIT SYS. 0.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1081.54 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

173

r NUMBER OF RANDOM NUMBERS USED = 6004

AVERAGE NUMBER OF UNITS IN SYS.= 1.982

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2143.365
(rRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.7757

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.96900000d+03
MEAN ARRIVAL TIME(MIr) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.70

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 0.77 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00

SIMULATION RUN LENGTH 1072.07 HOURS..

NUMBER OF TRUCKS UNLOADED 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 2.151

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2306.380
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8011

TRUCK)UEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
3ERVER QUEUE.

174

7 "Y 7 y 7.w

DSEED = 0.10710000d+04
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.70

MAXIMUM LENGTH OF viAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 0.72 HOURS..

PROPORTION OF TRUCKS rAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1078.29 HOURS..

NUMBER OF TRJCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6009

X, ,3'R-. "'4ER OF UNITS IN SYS.= 2.002

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2159.108
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.7887

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.11730000d+04
MEAN ARRIVAL TIME(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.70

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 0.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 1082.48 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

175

NUMBER OF RANDOM NUMBERS USED = 6006

AVERAGE NUMBER OF UNITS IN SYS. = 2.093

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2266.082
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.7751

TRUCK QUESING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.27170000d+04
MEAN ARRIVAL rIAE(MIAT) = 0.3333
MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = 0.71

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE rIME TO TRANSIT SYS. 0.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
3YSTEM 4.

SIMULATION RUN LENGTH 1067.87 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6004

AVERAGE NUMBER OF UNITS IN SYS.= 2.122

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2265.961

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8112

176

* *-

APPENDIX FF

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

ADA LINE-BY-LINE TRANSLATION WITH 3500 ELEMENT ARRAY
TELESOFT-ADA COMPILER VERSION 1.5

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE

DSEED= 5.6700000E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.3094196E-01

AAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME 'TO TRANSIT SYS. 8.0462091E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 6.6666669E-03

SIMULATION RUN LENGTH 5.0935635EI-2HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3007

AVERAGE NUMBER OF UNITS IN SYS.= 2.3701117E+00

rI

TOTAL NUMBER OF TRUCK HOURS IN TH. SYSTEM(S)= 1.2072314E+03
(TrRLJ 'KS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547093E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 4.5900001E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIM~E DOCK CREW IS BUSY =7.3167362E-01

177

. ..

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 7.0568180E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.000 00E+00

SIMULATION RUN LENGTH 5.3324599E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.9850552E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0585227E+03

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8167114E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 5.6100001E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1636633E-01

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYS. 7.9491424E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.J000vJE+00

SIMULATION RUN LENGTH 5.2921595E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 15 0

NUMBER OF RANDOM NUMBERS USED = 3008

AVERAGE NUMBER OF UNITS IN SYS.= 2.2530903E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) = 1.1923713E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8457193E+00

178

I

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.6300001E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1621222E-01

MAXIMUM LENGTH OF 4AITING LINE = 1

AVERAGE TIME TO TRANSIT SYS. 6.9050850E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.0000000E+00

SIMULATION RUN LENGTH 5.3483600E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS. = 1.9365986E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0357626E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8083374E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.1300001E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.3000000E-01

PROPORTION OF TIME DOCK CREW iS BUSY = 7.3744874E-01

MAXIMUM LENGTH OF 4AITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 7.0562534E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0000O00E+00

179

AD-8161 ?15 AN ASSESSMENT OF D'S SUITRILITV IN GENERAL. PURPOSE 3/3
PROGRAMNING RPPLICATIONS(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFD OH SCHOOL OF SYST.

UNLSIID LDCVT TAL. SEP 85 F/O 9/2 N

El..

13.6.

1.8.

11111 L254

MICROCOPY RESOLUTION TEST CHART
NATIONAL. ACREAL, OF STANDAROS -963-

SIMULATION RUN LENGTH 5.3041234E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 302

AVERAGE NUMBER OF UNITS IN SYS.= 1.9955001E+ 0

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0584379E+03
(rRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8298738E+00

TRUCK QUEUING PROBLEA: ANDERSON AN) S4EENEY-SINGLE
SERVER QUEUE

DSEED= 8.6700000E+02
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2206544E-01

MAA(IMJM LENGTH OF AITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 6.9945359E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE dOURS.. IN THE
SYSTEA4 J.000J0JE+00

SIMULATION RUN LENGTH 5.2559552E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.9961746E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0491803E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8577108E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED- 9.6899995E+02

180

.. ,-..- ?. -- . .- ,..... ,,...... :,.-. ,

MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01

MEAN SERVICE TIME(MSVT) = 2.50 0000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2336530E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.9918785E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.O000OOOE-03

SIMULATION RUN LENGTH 5.2588500E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 2.2795510E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) = 1.1987817E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8542361E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.0709999E+03
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1392626E-01

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. S.9153060E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.I000000E+00

SIMULATION RUN LENGTH 5.3004603E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.- 1.9569921E+00

181

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0372959E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8318295E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED = 1.1729999E+03
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1630754E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 8.0523452E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM O.0 00aOE+ 0

SIMULATION RUN LENGTH 5.3108630E+32HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS. = 2.2743041E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.2078517E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8281655E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED = 2.7170000E+03
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5 00000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2412753E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.5356698E-01HOURS.

182

". . ° , . °, . - -,. .-. .. ", .' .- ,. -, -. -. , , ,. , . •- .. ,. " .. , .. -,

.- . _ . -_ .- I : .- -. .W: - .- I . , .-...- %" , ,, - ; %' I N. - .- W"s ., % . W .' i -. ' .' " T

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.0000000E+00

SIMULATION RUN LENGTH 5.2110710E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 15#0

NUMBER OF RANDOM NUMBERS USED = 3011

AVERAGE NUMBER OF UNITS IN SYS.= 2.1691327E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)
= 1.1303504E+03

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS!PER HR
= 2.8957579E+00

183

.-............. -................--. .--..---..

APPENDIX GG

OUTPUT LISTING
TRUCK SIAULATION PROGRAM

ADA LINE-BY-LINE TRANSLATION WITH 3500 ELEMENT ARRAY
VADS COMPILER RELEASE V04.06

TRUCK QUEUING PRO3LEA: ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE

DSEED= 5.67000000E+02
MEAN ARRIVAL TIME(MIAr) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.500 OE-01

PROPORTION OF TIME DOCK CRE4 IS BUSY = 7.33942508E-01

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME TO TRANSIT SYS. 8.04808941E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 6.66666667E-03

SIMULATION RUN LENGTH 5.09356313E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 15@0

NUMBER OF RaNDOM NUMBERS USED = 3007

AVERAGE NUMBER OF UNITS IN SYS.= 2.37007647E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

1.20721341E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.95470962E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 4.59000000E+02

AEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
4EAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.31673147E-01

184

...

MAXIMUM LENGTH OF WAITING LINE =10

AVERAGE TIME TO TRANSIT SYS. 7.05674893E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0000O000E+ 0

SIMULATION RUN LENGTH 5.33246154E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AMERAGE NUMBER OF UNITS IN SYS.= 1.98503511E+00

forAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.05a51234E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.81671042E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SwEENEY-SINGLE
SERVER QUEUE

DSEED= 5.61000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16366562E-01

MAXIMUM LENGTH OF viAITING LINE = 13

AVERAGE TIME TO TRANSIT SYS. 7.94906046E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM O.0000 000E+00

SIMULATION RUN LENGTH 5.29215984E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3008

AVERAGE NUMBER OF UNITS IN SYS.= 2.25306700E+00

fOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.19235907E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.84571904E+00

185

-" °' °.". , + "- -+°-".o" ° .° .- ". +. jo-o'.~, ,°.°% .°.'-°'. +". ..°° o° - ".. "..........."...".................... " ", °, -'

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.63000000E+02

MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.500000O0E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16212171E-01

MAXIMUM LENGTH OF WAITING LINE =10

AVERAGE TIME TO TRAASIT SYS. 0.9050838E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0 0OO0000E+00

SIMULATION RUN LENGTH 5.34835834E+02HOURS.

NUMBER OF TRUCKS UNLOADED =150'a

NUMBER OF RANDOM NUMBERS USED =3004

AVERAGE NUMBER OF UNITS IN SYS.- 1.93657790E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.03575126E-03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.80833838E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SIN4GLE
SERVER QUEUE

DSEED= 6.13000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) - 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.37447834E-01

KAXIMUM LENGTH OF WAITING LINE =10

AVERAGE TIME TO TRANSIT SYS. 7.056'14019E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.000000JOE+00

186

SIMULATION RUN LENGTH 5.30412527E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 1.99546763E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.05842103E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.82987283E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 8.67000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.500 0000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.22066315E-01

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 6.99446403E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0000 00E+00

SIMULATION RUN LENGTH 5.25595120E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.99615553E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.04916960E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.85771298E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEEI TY-SINGLE
SERVER QUEUE

DSEED= 9.69000000E+02

187

MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01

MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.23365362E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.99180875E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.00000000E-03

SIMULATION RUN LENGTH 5.25884911E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 2.27953168E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.19877131E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.85423668E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.07100000E+03

MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.13927243E-01

MAXIMUM LENGTH OF WAITING LINE =10

AVERAGE TIME TO TRANSIT SYS. 6.91520862E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.OOOOOOOOE+00

SIMULATION RUN LENGTH 5.30045391E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NOMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS. = 1.95696691E+00

i 133

.

.

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

1.03723129E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.83183294E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.17300000E+03
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.5@00000E-01

PROPORTION OF TIAE DOCK CREW IS BUSY = 7.16307133E-01

MAXIMUM LENGTH OF 4AITING LINE = 12

AVERAGE TIAE ro 2ANSIT SYS. 8.0522333E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00i0000Z+00

SIMULATION RUN LENGTH 5.31086518E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 2.27427247E+00

rOAL NULMBER OF rRUCK HOURS IN rHE SYSTEM(S)=
1.20763544E+33 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.82816443E+00

TRUCK QUEUING PROBLEM: ANDERSOJ AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 2.7170000E+03
4EAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.500000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.24128190E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.53558208E-01HOURS.

189

PROPORTION OF rRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.0J0J0E+00

SIMULATION RUN LENGTH 5.21107093E+02HOURS.

AJMBER OF TRUCKS UNLOADE) = 150

NJMBER OF RANDOM NUMBERS USED = 3011

AVERAGE NUMBER OF UNITS IN SYS.= 2.10-910752E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)
=

1.13033731E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR
= 2.89575794E+00

190

......... .. .-%- " I---~l . .m

APPENDIX HH

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

ADA LINE-3Y-LINE TRANSLATION WITH 650 ELEMENT ARRAY
VADS COMPILER RELEASE V04.06

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE

DSEED= 5.67000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.5 0000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.J38990JOE-01

MAXIMUM LENGTH OF WAITING LINE 15

AVERAGE TIME TO TRANSIT SYS. 7.63210312E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.33333333E-03

SIMULATION RUN LENGTH 1.05303208E+03HOURS.

AJMBER OF TRUCKS UNLOADED = 3000

qJABER OF RANDOM NUMBERS USED = 6006

AVERAGE NUMBER OF UNITS IN SYS. = 2.17432353E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.28963244E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.85271461E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSED= 4.39000000E+02
AEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
%lEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION ,)F fIME DOCK CREW IS BUSY = 7.21658101E-01

191

.. . .. , , . - I, • L. -Si- T. . 5 ~ l] -y . i-. . TS~ .L- T5. y]L 5T - - LL I5 -- , L -

U

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 6.98115739E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.@0J aE+ 0

SIMULATION RUN LENGTH 1.07615362E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS. = 1.94614150E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)-

2.09434722E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.79049379E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED = 5.61000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE ZIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.01955668E-01

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYS. 7.62128362E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 3.JaJi00E+00

SIMULATION RUN LENGTH 1.08388089E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 2.10944312E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.28638509E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.77059964E+00

192

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.63000000E+02
MEAN ARRIVAL TIi4E(MIAi j = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.23701229E-01

MAXIMUM LENGTH OF WAITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 7.10316696E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00000000E+00

SIMULATION RUN LENGTH 1.06827350E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 1.99476078E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.13095009E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.81107787E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.13000000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.24916698E-01

MAXIMUM LENGTH OF 4AITING LINE = 10

AVERAGE TIME TO TRANSIT SYS. 6.97767120E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.00000 00E+00

193

SIMULATION RUN LENGTH 1.07114171E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6002

AVERAGE NUMBER OF UNITS IN SYS.= 1.95427116E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.J933013GE+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.80168344E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 3.67300000E+02
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

?RjpOR ri.N OF TIME DOCK CREW IS BUSY = 7.01069610E-01

IAAIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.14437305E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.000000E+i0

SIMULATION RUN LENGTH 1.08154439E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6004

AVERAGE NUMBER OF UNITS IN SYS.= 1.98171425E+03

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.14331192E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.77566047E+00

TRUCK QUEUING PROBLEM: NNDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 9.69000000E+02

194

.9

MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01

MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.04902495E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.68772879E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.00000000E-03

SIMULATION RUN LENGTH 1.07207391E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 2.15126832E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.30631864E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.80111284E+00

£RUCK 2UEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
S EltvmR ._ E .u.

DSEED= 1.07100000E+03
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.03083724E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.19684274E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

3YSTEM 0.00000000E+00

SIMULATION RUN LENGTH 1.07828782E+03HOURS.

.UMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6009

AVERAGE NUMBER OF UNITS IN SYS.- 2.00229733E+00

195

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.15905282E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR = 2.78863030E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.17300000E+03
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 6.99513375E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.55341685E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00000000E+00

SIMULATION RUN LENGTH 1.08247663E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6006

AVERAGE NUMBER OF UNITS IN SYS. = 2.09337088E+00

TOTAL NUMBER OF TRUCK aOURS IN THE SYSTEM(S)=
2.26602506E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.77511766E+00

TRUCK QUEUING PROBLEM: ANDERSON ANO SWEENEY-SINGLE
SERVER QUEUE

DSEED- 2.71700000E+03
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF rIME DOCK CREW IS BUSY = 7.10936320E-01

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME tO rRANSIT SYS. 7.55301701E-01HOURS.

196

......... ""., . ., ."."- """"'-'- ,. .t,,'-'-"" "" " -".._<{. , "", -7 " " ". - .'- -

PROPORTION OF TRU.KS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 0.0a00033E+00

SIMULATION RUN LENGTH 1.06786648E+03HOURS.

NUMBER OF TRUCKS UNLOADED = 30 0

NUMBER OF RANDOM NUMBERS USED = 6004

AVERAGE NUMBER OF UNITS IN SYS.= 2.12189927E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.26590510E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.81121287E+00

197

APPENDIX II

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

ADA REDESIGN
TELESOFT-ADA COMPILER VERSION 1.5

RANDOM NUMBER GENERATOR SEED 5.6700000E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME =2.500000OE-01

PROPORTION OF TIME DOCK CREW IS BUSY =7.3094196E-01

AAXIMUM LENGTH OF WAITING LINE - 16

AVERAGE TIME TO TRANSIT SYSTEM = 8.0482091E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS = 6.6666669E-
03

SIMULATION RUN LENGTH =5.0935635E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3006

AVERAGE NUMBER OF UNITS IN SYS. - 2.3701117E+00

rOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)
1 .2072314E+03

AVERAGE NUMBER OF ARRIVALS PER HR - 2.9527462E+00

RANDOM NUMBER GENERATOR SEED 4.5900001E+02
MEAN INTERARRIVAL TIME - 3.3333334E-01
.41&AN SERVICE TIME =2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY =7.3167362E-01

MAXIMUM LENGTH OF WAITING LINE 11

AVERAGE TIME TO TRANSIT SYSTEM =7.0568180E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS
0 .0000000E+00

SIMULATION RUN LENGTH 5.3324599E+02 HOURS

198

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3003

AVERAGE NUMBER OF UNITS IN SYS. = 1.9850552E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)
1.0585227E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8148360E+00

RANDOM NUMBER GENERATOR SEED 5.6100301E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1636633E-01

MAXIMUM LENGTH OF WAITING LINE = 14

AVERAGE TIME TO TRANSIT SYSTEM = 7.9491424E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.0000000E+00

SIMULATION RUN LENGTH = 5.2921595E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED - 3007

AVERAGE NUMBER OF UNITS IN SYS. = 2.2530903E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.1923713E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8438296E+00

RANDOM NUMBER GENERATOR SEED 6.6300001E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1621222E-01

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 6.9050850E-01

199

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

0.@0000E+00

SIMULATION RUN LENGTH = 5.3483600E+02 HOURS

qJ436R OF' TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 303

AVERAGE NUMBER OF UNITS IN SYS. = 1.9365986E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.J3573206E-+J3

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8064678E+00

RANDOM NUMBER GENERATOR SEED 6.1300001E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.3744874E-01

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE rIME TO TRANSIT SYSTEM = 7.0562534E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
S.0000000E+00

SIMULATION RUN LENGTH = 5.3041234E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 300i

AVERAGE NUMBER OF UNITS IN SYS. = 1.9955001E+0J

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.0584379E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.3279884E+00

RAADOM NUMBER GENERATOR SEED 8.6700000E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME =2.50000OE-01

PROPORrION OF TIME DOCK CREW IS BUSY = 7.2206544E-01

200

- -, - , - . -' - ,. . ./ . , .,, . - °.. ..

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 6.9945359E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.000000E+00

SIMULATION RUN LENGTH = 5.2559552E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3003

AVERAGE NUMBER OF UNITS IN SYS. = 1.9961746E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.0491803E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8558082E+00

RANDOM NUMBER GENERATOR SEED 9.6899995E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01

MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7 .2336530E-0I1

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYSTEM = 7.9918785E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS = 4.0000000E-
03

SIMULATION RUN LENGTH = 5.2588500E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3001

AVERAGE NUMBER OF UNITS IN SYS. = 2.2795510E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.1987817E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8523344E+00

RANDOM NUMBER GENERATOR S-EED 1.0709999E+03
MEAN INTERARRIVAL TIME = 3.3333334E-01

201

i. - _ . o

MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1392626E-01

MAXIMUM LENGTH OF WAITING LINE = 1i

AVERAGE TIME TO TRANSIT SYSTEM = 6.9153060E-01

PROPORTION OF TRUCKS rAKING FOUR OR MORE HOURS
0.0000000E+00

SIMULATION RUN LENGTH = 5.3004603E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3001

NVERAGE NUMBER OF UNITS IN SYS. = 1.9569921E+00

rOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.0372959E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8299429E+00

RANDOM NJMBER GENERATOR SEED 1.1729999E+03
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1630754E-01

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYSTEM = 8.0523452E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

0. 0000000E+00

SIMULATION RUN LENGTH = 5.3108630E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3003

AVERAGE NUMBER OF UNITS IN SYS. = 2.2743041E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.2078517E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8262827E+00

202

RANDOM NUMBER GENERATOR SEED 2.7170000E+03
MEAN INTERARRIVAL TIME =3.3333334E-01

M IEAN SERVICE TIME = 2.500G000OE-01

PROPORTION OF TIAE DOCK CREW IS BUSY =7.2412753E-01

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRAN'.SIT SYSTEM = 7.5356698E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS
0.000E0

SIMULATION RUN LENGTH = 5.2110710E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3010

AVERAGE NUMBER OF UNITS IN SYS. - 2.1691327E+00

TOTAL NUMBER OF -rRtJCK HOURS IN THE SYSTEM(S)
1 .1303504E+03

AVERAGE NUMBER OF ARRIVALS PER HR =2.8938388E+00

203

APPENDIX JJ

OUTPUT LISTING
TRUCK SIMULATION PROGRAM

ADA REDESIGN
VADS COMPILER RELEASE V04.06

RANDOM NUMBER GENERATOR SEED 5.67J0 E+02
MEAN INTERARRIVAL TIME = 3.33333333E-01
MEAN SERVICE TIME = 2.53000333E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.30942533E-01

MAXIMUM LENGTH OF WAITING LINE = 16

AVERAGE TIME ro TRANSIT SYSTEM = d.J4308941E-01

PROPORTION OF TRUCKS fAKING FOUR OR MORE HOURS =
6.66666667E-03

SIMULATION RUN LENGTH = 5.09356313E+02 HOURS

NUMBER OF TRUCKS UNLOADED = i5

NUMBER OF RANDOM NUMBERS USED =3000

AVERAGE NUMBER OF UNITS IN SYS. = 2.37007647E+'

TOTAL NUMBER OF TRUCK HOURS IN 2HE SYSTEM(S) =
1.20721341E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.93274636E+00

RANDOM NUMBER GENERATOR SEED 4.59000E+02
MEAN INTERARRIVAL TIME = 3.33333333E-01
lEAN SERVICE TI4E = 2.50000E-01

* OPORTION OF TIME DOCK CREW IS BUSY = 7.31673147E-01

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 7.05674893E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

204

F
SIMULATION RUN LENGTH = 5.33246154E+02 HOURS

IJM3E'R OF TRUCKS UNLOADED 1500

IJA, 3ER OF RANDOM NUMBERS USED 3003

AVERAGE NUMBER OF UNITS Ii SYS. 1.98503511E+00

TOTAL NUMBER OF TRUCK HOURS IN tHE SYSTEM(S) =
1 .5351234E+03

XJERAGE NUMBER OF ARRIVALS PER HR = 2.81483512E+00

RANDOM NUMBER GENERATOR SEED 5.610@0 @0E+02
MEAN INTERARRIVAL TIME 3.33333333E-01

MEAN SERVICE TIME = 2.50000000E-0I

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16366562E-01

MAXIMUM LENGTH OF WAITING LINE = 14

AVERAGE TIA O RNNSIT SYSTEM = 7.94906046E-01

PROPORTION OF TRJCS TAKING FOUJR OR MORE HOURS =
J.00000000E+00

SIMULATION RUN LENGTH = 5.29215984E+02 HOURS

NUMBER OF TRUCKS UNLOADEO =15@@

NUMBER OF RANDOM NUMBERS USED = 307

AVERAGE NUMBER OF UNITS IN SYS. = 2.253J6700E+00

TOTAL NUMBER OF fRUCK HOURS IN THE SYSTEM(S) =

1.19235907E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.84382945E+00

RANDOM NUMBER GENERATOR SEED 6.63@0@000E+02

MEAN 14rERARRIVAL TIME = 3.33333333E-01

AEAN SERVICE TIME = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16212171E-01

MAX141J,' ENGri OF WAITING LINE 1i

205

AVERAGE TIME TO TRANSIT SYSTEM = 6.90500838E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

0.00000000E+00

SIMULATION RUN LENGTH 5.34835834E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3003

AVERAGE NUMBER OF UNITS IN SYS. 1.93657790E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.03575126E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.80646865E+00

RANDOM NUMBER GENERATOR SEED 6.13000000E+02
MEAN INTERARRIVAL TIME = 3.33333333E-01
MEAN SERVICE TIME = 2.500000O0E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.37447834E-01

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 7.05614019E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

O.OOOOOOOOE+00

SIMULATION RUN LENGTH 5.30412527E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3001

AVERAGE NUMBER OF UNITS IN SYS. = 1.99546763E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.05842103E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.82798751E+00

RANDOM NUMBER GENERATOR SEED 8.67000000E+02
MEAN INTERARRIVAL TIME = 3.33333333E-01
MEAN SERVICE TIME = 2.50000000E-01

206

r ..- , . _'.' . ., - -.. -. ,

PROPORTION OF TIME DOCK CREW IS BUSY = 7.22066315E-01

MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 6.99446403E-01

PROPORTION OF TRUCKS TAMLNG FOUR OR MORE HOURS =
0.00000000E+00

SIMULATION RUN LENGTH = 5.25595120E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED 3003

AVERAGE NUMBER OF UNITS IN SYS. = 1.99615553E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.04916960E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.85581038E+00

RANDOM NUMBER GENERATOR SEED 9.69000000E+02
MEAN INTERARRIVAL TIME = 3.33333333E-01

MEAN SERVICE TIi4E = 2.50 0000OE-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.23365362E-01

MAXIMUM LENGTI' OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYSTEM = 7.99180875E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

4.00000000E-03

SIMULATION RUN LENGTH = 5.25684911E+02 HOURS

NUMBER OF PROCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3001

AVERAGE NUMBER OF UNITS IN SYS. = 2.27953168E+ 0

TOTAL NUMBER OF TRUCK HOURS IN rHE SYSTEM(S) =

1.19877131E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.85233512E+00

207

.- -..... - -. ., . , .- - - - -. . .-- ., .- . - . . -. .

RANDOM NUMBER GENERATOR SEED 1.07100000E+03

MEAN INTERARRIVAL TIME 3.33333333E-01
MEAN SERVICE TIME = 2.50000000E-01

PROPORTION OF TfIM DOCK CRE4 IS BUSY = 7.13927243E-01

AAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 6.91520862E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

0.3000000E+00

SIMULATION RUN LENGTH = 5.30045391E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 30J1

AVERAGE NUMBER OF UNITS IN SYS. = 1.95695591E+ 0

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.03728129E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.82994631E+00

RANDOM NUMBER GENERATOR SEED 1.17300000E+03
MEAN INTERARRIVAL TIME = 3.33333333E-01
MEAN SERVICE TIME = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16307133E-01

MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT SYSTEM = 8.05223630E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

O.O0000000E+ 0

SIMULATION RUN LENGTH = 5.31086518E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3003

AVERAGE NUMBER OF UNITS IN SYS. = 2.27427247E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.20783544E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.82628150E+00

208

..................... •...'.". o
"

." " '" '° ° -"
°

" ° " -°°° "."° . "° " . ""°. °" . "" °
•

• L -.. " '
-
. i' -J • _ ' f ! * ~ ~ . -- . -p - - .- , o - . *T C . -. * , -

RANDOM NUMBER GENERATOR SEED 2.71700000E+03
4EAN INTERARRIVAL TIME = 3.33333333E-01
AEAN SERVICE TIME = 2.50000000E-01

PROPORTION OF TIME OOCK CREW IS BUSY = 7.24128190E-01

MAXIMUM LENGTH OF vAITING LINE = 13

AVERAGE TIME TO TRANSIT SYSTEM = 7.53558208E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS

.) j)J.j333E+j0

SIMULATION RUN LENGTH = 5.21107093E+02 HOURS

NUMBER OF TRUCKS UNLOJDED = 15 0

NUMBER OF RANDOM NUMBERS USED = 3010

AVERAGE NUMBER OF JNfLTS IN SYS. 2.16910752E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) -
1.13033731E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.89383895E+00

209

APPENDIX KK

OUTPUT LISTING
LIBRARY MAINTENANCE PROGRAM
ORIGINAL PASCAL VERSION

% liblist
WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR VIEW THE FILE?
TYPE I OR D OR V: V

ANNA KAREN INA
TOLSTOY, COUNT LEO

10

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
WAR AND PEACE

TYPE THE NAME OF THE AUTHOR:
TOLSTOY, COUNTTLEO

TYPE THE CALL NUMBER OF THE BOOK:
5

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO

5
ANNA KARENINA

TOLSTOY, COUNT LEO

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:I

TYPE THE NAME OF THE BOOK:
JON MAMA

TYPE THE NAME OF THE AUTHOR:
JOE DADDY

210

TYPE THE CALL NUMBER OF THE BOOK:
7

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:I

TYPE THE NAME OF THE BOOK:
JOE DADDY

TYPE THE NAME OF THE AUTHOR:
JOE MAMA

fYPE THE CALL NUMBER OF THE BOOK:
15

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO

5
JOE MAMA
JOE DADDY

7
ANNA KARENINA

TOLSTOY, COUNT LEO
10

JOE DADDY
JOE MAMA

15

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:D

TYPE THE CALL NUMBER OF THE BOOK:10

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO

5
JOE MAMA
JOE DADDY

7
JOE DADDY
JOE MAMA

15

211

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEvi FILE, OR F TO
FINISH:F

LIBRARY FILE IS 14OW UPDATED

212

APPENDIX LL

OUTPUT LISTING
LIBRARY MAINTENANCE PROGRAM

ADA LINE-BY-LINE TRANSLATION
VADS COMPILER RELEASE V04.06

% lib
WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR VIEW THE FILE?
TiPE I OR D OR V: V
ANNA KARENINA

TOLSTOY, COUNT LEO

END OF LIBRARY FILE

TYPE I TO INSERT, o TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
4AR AND PEACE

TYPE THE NAME OF THE AUTHOR:
TOLSTOY, COUNT LEO

TYPE THE CALLNO OF THE BOOK:
5

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: V

4AR AND PEACE

TOLSTOY, COUAT LEO
5

ANNA KARENINA
TOLSTOY, COUNT LEO

E14D OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
JOE MAMA

213

.. .. .: -.. -. . .- *-. .. -.- ,. - ... -. .. -.. .. ~. - - , ' ." ' ''.- . - ', -.. . '-."•. . - . . - .. - . . -.

TYPE THE NAME OF THE AUTHOR:
JOE DADDY

TYPE THE CALLNO OF THE BOOK:
7

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
JOE DADDY

TYPE THE NAME OF THE AUTHOR:
JOE MAMA

TYPE THE CALLNO OF THE BOOK:
15

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: V

WAR AND PEACE
TOLSTOY, COUNT LEO

5
JOE MAMA
JOE DADDY

7
ANNA KARENINA
TOLSTOY, COUNT LEO

10
JOE DADDY
JOE MAMA

15

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO

FINISH: D

TYPE THE CALL NUMBER OF THE BOOK:10

TYPE I TO INSERV, D rO DELETE, V TO VIEW FILE OR F TO
FINISH: V

WAR AND PEACE
TOLSTOY, COUNT LEO

5
JOE MAMA
JOE DADDY

7
JOE DADDY

214

JOE MAMA
15

END OF LIBRARY FILE

TYPE I rO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH : F

LIBRARY FILE IS NOW UPDATED

215

............................

APPENDIX MM

OUTPUT LISTING
LIBRARY MAINTENANCE PROGRAM

ADA REDESIGN
VADS COMPILER RELEASE V04.06

% lib main

LIBRARY MAINTENANCE PROGRAM

Wnat do you want to do?
'I' = insert a book
'D' = delete a book
'P' = print library list
'Q' = quit

P

10 ANNA KARENINA by TOLSTOY, COUNT LEO

4hat do you want to do?
'I' = insert a book
'D' = delete a book
'P' = print library list
IQ' = quit

I

Enter book title
MAR AND PEACE

Enter author name
TOLSTOY, COUNT LEO

Enter call number

5

What do you want to do?
'I' = insert a book
'D' = delete a book
'P'= print library list

= quit
P

5 WAR AND PEACE by TOLSTOY, COUNT LEO

216

- . -

10 ANNA KARENINA by TOLSTOY, COUNT LEO

What do you want to do?
'I' = insert a book
'D' - delete a book
'P' = print library list
IQ' = quit

I

Enter book title
JOE MAMA

Enter author name
JOE DADDY

Enter call number
7

What do you want to do?
'I' = insert a book
'D' = delete a book
'P' = print library list
'Q' = quit

I

Enter book title
JOE DADDY

Enter autnor name
JOE MAMA

Enter call number
i5

What do you want to do?
'I' = insert a book
'D' - delete a book
'P' - print library list
IQ' - quit

P

5 WAR AND PEACE by TOLSTOY, COUNT LEO
7 JOE MAMA by JOE DADDY

13 ANNA KARENINA by TOLSTOY, COUNT LEO

15 JOE DADDY by JOE MAMA

What do you want to do?
'1' = Lnsert a book
D delete a book
'P' - print library list
IQ' - quit

D

Enter call number of book to be deleted.

217

-,-.".-',....................... "..".... "''.."......

10

What do you want to do?
'I' = insert a book
'D' = delete a book
fp ' = print library list
'Q' = quit

*" P

5 WAR AND PEACE by TOLSTOY, COUNT LEO
7 JOE MAMA by JOE DADDY

15 JOE DADDY by JOE MAMA

What do you want to do?
'I' = insert a book
'D' = delete a book
'P' = print library list
IQ' = quit

*2Q
0%

121..
- -- * * * -218

BIBLIOGRAPHY

1. Banks, Jerry and John S. Carson II. Discret--J.enc
System Simulation. Englewood Cliffs aJ: Prentfce-
Hall Inc., 1984.

2. Booch, Grady. Software Engineering with Ada. Menlo
Park: The Benjanin/Cinini~ns Publisning Company, 1983.

3. 1coa], William J. "Pentagon Orders End to Computer
Babel," Science, 211: 31-33 (2 January 1981).

4. Coar, David. "Pascal, Ada, and Modula-2," Byte, 9:
215-232 (August 1984).

5. Crafts, Ralph E. "Ada for Business and Other Non-DoD
Applications," Proceedings of the Annual Cri C-2 .en Ada
(Trademark) Technology (2nd) Held at Hanpton VA, 7J-73 (27-
23 ?larch 1984) (AD-P003 425).

5. DaCosta, Robert. "Ada: An Iniepth Look," Defense
Science and Electronics, 3: 33-73 (March 1984).

7. Department of Defense. 4iiitary Standard Ada
ProgrammirI Languagae. Washington DC, ANZSIiMIL-STD-1815A
(January 1983).

3. Enrenfried, D.H. Feasibility Assessment of Jovial to
Ada Translation. Tecnnical Paper, Air Force Wright
Aeronautical Labs Wright-Patterson AFB OH. August 1983 (AD-
A134 357).

9. Emory, William C. Business Research Aethods. Homewood
IL: Richard D. Irwin Inc., 198M.

10. Fawcette, James E. "Ada Goes to Work," Defense
Electronics, 14: 60-81 (July 1982).

11. Fisher, David A. "DoD's Common Programming Language
Effort," Computer, 3: 24-33 (March 1973).

12. Fonash, Peter. "Ada - Program Overview," Signal, 37:
27-31 (July 1983).

13. - ------. "Parlez-Vous 'Ada'?" Program Mana3er, 12: 5-
i (July-August 1983).

14. LeBlanc, Richard J. and John L. Goode. "Ada and

.;)FhCt4re Development: A New Concept in Language Design,"
17'puter, 15: 75-82 (May 1983).

219

L o • + . ._ . . .+ + • , . . . + --

15. Miller, Alan R. FORTRAN Programs for Scientists and
Engineec3. 3 a3rk:_ley Ck: Sybex Inc., 1982.

16. Pyle, I.C. The Ada Proqram Language. Englewood Cliffs
NJ: Prentice Hall In-rnatiional, 1981.

17. Schmitz, Gregory H. "Can Ada Lower the Cost of
Softda_-e in C31 Systems?" Signal, 37: 75-77 (August 1983).

18. Sherman, Bruce. "Design of the First Ada KAPSE
Interface," Defense Electronics, 15: 141-149 (April 1984).

19. U.S. Department of the Air Force, Directorate of
Integration and Technology. Data Project Directive HAF-P83-
036, Washington DC (23 December 1983).

20. Wylie, George T. Lt Cmdr and Watt, Thomas R. Lt,
Utilization of Ada as a Program Design Language. MS thesis,
Naval Post Graduate School, Monterej CA, Jun 1983 (AD-A132
244).

* 21. Wichman, B.A. "A Comparison of Pascal and Ada," The
Computer Journal, 25: 248-252 (May 1982).

22. Zaks, Rodnay. Introduction To Pascal Including UCSD
Pascal (Second Edition). Berkeley CA- Sybex Inc., 198f'-

220

S- . ,- n rr n w r.. ; - "~w r C - r. - r" r. W' --, ."% - •° •"

UNCASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b, OECLASSIFICATION/DOWNGRADINGSCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING OR,3ANIZATiON REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUM8ER(SI

AFIT/GLM/L / 85S-62
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Systems I/fapplicable)

and Logstics AFIT/LS4
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Bc. ADDRESS 'City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. TITLE Inciude Security Clawificatzon)

See Box 19. _ _ 1
12. PERSONALAUTHORs) Larry D. Cavitt, Capt, USAF

Anthony A. Panek, Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. D5y 16. PAGE COUNT
MS Thesis FROM _ TO 1985 September 2-4

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if neceua-y and identify by block number)

FIELD GROUP SUB. GR.

09 02 Ada, Programing Language, Software Readability
i i Software Maintenance, Simulation

19. ABSTRACT 'Continue on reuerse if neceuary and identify by block number)

Title: AN ASSESSe4T OF ADA'S SUITABILITY IN GEERAL
PURPOSE PROGRAn4ING APPLICATIONS

Thesis Chairman: Patricia K. Lawlis, Captain, USAF
Instructor in Mathematics and Computer Science

Dean tot Re.ze ch nd PtotssiOui DOeWsiopuet

AL, Fores Institute of TechmlogT (410-
Wrtght.Patteea AFS OX 4543

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 3 SAME AS RPT. 7 OTIC USERS 0 UNCLASSIF'ED

22.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Ilnclude .A pea Code)

Patricia K. Lawlis, Captain, USAF 513-255-3098 AFIT/EC

D FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

The Ada prgramning language is the result of a multiyear effort under the
sponsorship of the Department of Defense (DoD) to obtain the benifits of a
single DoD-wide language for use in embedded coaputer systems. The
language was develcped to reduce or eliminate many of the serious .ad:cestty
problems associated with the development and maintenance of software for
embedded systems. This rasearh assesses Ada's suitability in simple,
non-embedded applications, specifically, numerical computation, simulation,
and file processing. FCRTRAN and Pascal programs in these applications
were translated into Ada. Ccmiparisons were made between the originals
and the translations with regard to lines of source code, transportability,
maintainability, readability, execution time, and any other finding
relevant to the study. The study revealed that while further research is
needed, Ada is a powerful programming language suitable for use in these
ncn-embedded applications.

....- -- , - - ' .M . - . 7

FILMED
7-66

| .. -

